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ABSTRACT

A thermohydrodynamic analysis is presented and a computer code developed

for prediction of the static and dynamic force response of hydrostatic journal

bearings (HJBs), annular seals or damper bearing seals, and fixed arc pad bearings

for cryogenic liquid applications. The study includes the most important flow

characteristics found in cryogenic fluid film bearings such as flow turbulence, fluid

inertia, liquid compressibility and thermal effects. The analysis and computational

model devised allow the determination of the flow field in cryogenic fluid film

bearings along with the dynamic force coefficients for rotor-bearing stability

analysis.

Journal model: ASME JOURNAL OF TRIBOLOGY.
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EXECUTIVE SUMMARY

A thermohydrodynarnic analysis and computer code for the prediction of the

static and dynamic force response of fluid film bearings for cryogenic applications

have been completed on 1993. The current technological needs require reliable

and resilient fluid film bearing designs to provide maximum operating life with

optimum rotordynamic characteristics at the lowest cost. The analysis and code

constitute practical tools for the prediction of performance and design of cryogenic

liquid hydrostatic journal bearings, annular pressure seals or damper bearings, and

cylindrical pad hydrodynamic bearings.

The motion of a cryogenic liquid on the thin film annular region of a

fluid film bearing is described by a set of mass, momentum conservation, and

energy transport equations for the primitive turbulent bulk-flow variables, and

accompanied by thermophysical state equations for evaluation of the fluid material

properties. Zeroth-order equations describe the fluid flow field for a journal static

equilibrium position, while first-order linear equations govern the fluid flow for

small amplitude journal center translational motions and journal axis conical

motions. Solution to the zeroth-order flow field equations provides the bearing

flow rate, load capacity, restoring moments and torque. Solution to the first-

order equations determines the rotordynamic force and moment coefficients due

to journal lateral and angular motions. The analysis includes the effects of flow

turbulence, fluid inertia, liquid compressibility and thermal energy transport on

the performance of cryogenic liquid bearings.

The numerical predictions from the computational program (hydrosealt)

correlate favorably with experimental results available in the literature. Numerous

examples are provided to demonstrate the effectiveness of the program to analyze

cryogenic fluid film bearings as well as conventional viscous lubricant bearings.
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INTRODUCTION

Hydrostatic Journal Bearings (HJBs) are the ideal candidates to replace roller

bearings as support elements in cryogenic turbomachinery. These bearings along

with hydrostatic annular seals will be used for primary space-power applications

due to their long lifetime, low friction and wear, significant load capacity, and

large direct stiffness and damping force coefficients. HJBs, unlike rolling element

bearings, have no DN limit. Rotating machinery free of this constraint can

operate at larger speeds with better efficiency and reduced overall weight and

size. Durability in HJBs is assured by the absence of contact between stationary

and moving parts during steady-state operation, while long life reduces the

frequency of required overhauls. Despite these attractive features, fluid film

bearing stability considerations and thermal phenomena along with two-phase

flow operation are a primary concern for high speed operation with large pressure

differentials. Fluid film bearing stability is essentially related to hydrodynamic

and liquid compressibility effects, while thermal effects are of importance due to

flow turbulence with substantial energy dissipation.

A comprehensive literature review on the subject of hydrostatic bearings and

annular seals relevant to cryogenic liquid applications has been presented elsewhere

(San Andres, 1990a-c, 1991a-c, 1992a, 1993a). A brief discussion of the relevant

literature pertaining to the analysis, design and testing of fluid film bearings for

cryogenic applications over the last few years follows.

Reddecliff and Vohr (1969) initially studied HJBs for use in high-pressure

cryogenic rocket engine turbopumps. The inertia effect at the edges of the recesses

changed the pressure distribution, reduced the flow rate but did not affect the

total bearing load capacity. The non linear fluid advective inertial terms could

not be accounted for due to numerical difficulties. Variable fluid properties were
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treated aslinear betweenthose at the supply and discharge pressures, and steady-

state predictions were reported to agree well with experimental results. The

scatter in the measured recess pressures was attributed to variations in bearing

clearance caused by temperature differences between the bearing and shaft and

to measurement inaccuracies.

Artiles et al. (1982) presented a numerical solution to the static and dynamic

performance characteristics of hydrostatic journal bearings. A turbulent Reynolds

equation with constant fluid properties was solved by the column-matrix method,

while a Newton-Raphson scheme was implemented for efficient calculation of the

recess pressures. Turbulent-to-laminar flow power-loss ratios were reported to

be in the range of 25 to 30 for the Reynolds numbers considered. Even though

there were neither energy considerations nor thermal effects in the analysis, large

temperature rises (up to 24.5°C) in the fluid film were reported for LOs bearings,

while temperature rises in LH_ bearings were negligibly small.

Braun et al.(1987a,b) introduced a comprehensive THD analysis for cryogenic

liquid hydrodynamic and hydrostatic journal bearings. On the fluid film region,

a variable-properties Reynolds equation was coupled to a 2-D energy transport

equation. The heat transfer to the bounding solids (shaft and bush) was analyzed

in its three dimensional complexity. Bulk-flow heat transfer coefficients were used

to represent the boundary conditions at the fluid/solid interfaces, and fluid inertia

effects were considered only at the pocket's edges with no recess volume-liquid

compressibility effects. Braun et al.'s analysis regard the fluid flow as laminar,

although large pressure differentials and rotational speeds were considered in the

applications studied. For a liquid hydrogen HJB, a small temperature increment

was found in the fluid film, and thermal effects were shown to be minimal

relative to a constant properties liquid model. Calculations for a liquid oxygen
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hydrodynamicjournal bearingshowedalargetemperature rise (13°K) for eccentric

operation at 14,000rpm with a profound impact on the massflow rate and load

capacity. The numericalpredictions presentedshowcircumferential flow Reynolds

numbersas large as 100,000with a laminar flow model. No definite conclusions

in regard to the effectof heat transfer from the fluid film to the bounding solids

are extracted from the analysis.

SanAndres (1990a)introduced the first full inertial, fully developedturbulent

bulk-flow model for the analysis of incompressibleliquids hydrostatic bearings.

This model revealedthe importance of flow turbulence and fluid inertia at the

film lands and at the recessboundariesof typical high speedhydrostatic bearings.

Results of the analysisshow that a fluid inertia flow model when compared to a

classical viscous model determines reduced leakagerates and hydrostatic forces

while increasing the hydrodynamic force due to journal rotation. These effects

then lead to the generationof larger direct damping and cross-coupledstiffness

coefficientswhith areduction in the direct stiffnesscoefficientsand the appearance

of significant inertia force coefficientsfor liquids of large density such as water

and liquid oxygen. San Andres (1991b) shows that moderate to large journal

eccentricitieshavea pronouncedeffecton the forcecoefficientsof HJBs with large

hydrodynamic effects (high rotational speeds). For large journal center static

excursions,the hydrodynamic effect producesforce coefficientssimilar in form to

those of a conventional circular journal bearing. Furthermore, orifice back-flow

accompaniedby a suddendrop on direct stiffnessis likely to occur at large journal

eccentricity operation.

A study of the laminar flow field on a recess-land region of a typical

high speedhydrostatic bearing geometry is given by San Andres and Velthuis

(1992). Computational experimentsreveMeda substantial hydrodynamic pressure
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generation on the downstream side of a recess followed by a sharp pressure drop

at the recess edge next to a film region of small clearance. Calculated recess-edge

entrance factors and recess shear coefficients form the basis of a simplified one-

dimensional recess bulk-flow model implemented for the analysis of finite length

hydrostatic bearings. Other recent analysis and numerical predictions studying

the same flow geometry are given by Braun et al. (1993), and Hill et al. (1993).

The Texas A&M hydrostatic bearing test facility directed has provided with

a wealth of experimental data for the static and dynamic force characteristics of

water lubricated hydrostatic bearings. Experimental measurements are routinely

performed for bearings of different geometries and at journal speeds ranging from

10,000 to 25,000 rpm and pressure supplies from 4 to 7 MPa. The test facility

accomodates state of the art instrumentation and control, and possesses the most

efficient and accurate bearing parameter identification method based on a real-

time process and frequency domain algorithms. Kurtin et al. (1993) reported

experimental data for the static performance characteristics of a 5 recess, water

HJB for the operating conditions noted and three different bearing clearances. The

experimental results correlate very well with predictions from the numerical model

developed by San Andres (1990a, 1992a). It is noted also that accurate theoretical

results depend greatly on the knowledge of the bearing operating clearance, and

most importantly, on the orifice discharge coefficients.

The stability characteristics of a simple rotor-bearing system are defined by

the threshold speed of instability and the whirl frequency ratio. This instability is

of the"_ " " • ,,
nyaroaynarmc type and solely due to the effect of journal rotational speed

on the flow field of a bearing under dynamic journal motions. The threshold speed

represents the journal rotational speed at which the bearings loose their effective

damping and any small perturbation from an equilibrium position determines
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unboundedrotor motions accordingto linear vibrations theory. The rotor-bearing

first natural frequency(critical speed)dependson the bearing equivalent stiffness

and the shaft stiffness. It is alsowell known that flexible rotors do presentnatural

frequenciesmuch lower than rigid rotors. The whirl frequency ratio denotesthe

ratio betweenthe onsetwhirl frequency (typically the system first critical speed)

and the threshold speed of instability. This ratio is independent of the flexibility

of the rotating shaft and, it provides information on the stability characteristics of

the fluid film bearings within the desired range of operation of a typical machine.

Plain cylindrical journal bearings show a characteristic whirl frequency ratio equal

to 0.50 for operation at small to moderate eccentricities (light loads) and hence

denote that a simple rotor-bearing system will become unstable at a rotational

speed equal to twice the system first critical speed.

The results presented by San Andres (t990c, 1991b) have shown that, con-

trary to generalized intuition, incompressible liquid hydrostatic bearings present

a whirl frequency ratio identical to that of plain journal bearings. This condition

then limits severely the application of H,IBs to high speed, light weight turbo-

machinery. Furthermore, cross-coupled inertia force coefficients for large density

fluids have an adverse effect on the threshold speed of instability The experimen-

tal results from the Hydrostatic Bearing Test Program at Texas A&M University

verify closely the theoretical predictions and show, in some circumstances, the

whirl frequency ratio to increase above 0.50 for low rotational speeds and large

supply pressures (Franchek et al., 1993, Mosher, 1993).

Approximate theoretical models for prediction of the dynamic force response

of hydrostatic bearings at the centered position have been reported also by San

Andres (1990b,1991a,1992b). Approximate analytical solutions to the turbulent

flow field bring insight into the understanding of the flow mechanics and provide



7

a fast and efficient tool for the preliminary designof hydrostatic journal bearings.

Results of the analysesshow the importance of recessvolume fluid compress-

ibility effects on the rotordynamic force responseof typical HJB for cryogenic

applications. In brief, HJBs handling highly compressibleliquids such as LH2

for example, are prone to show a self-excited type instability of the "pneumatic

hammer" type and could produce negative damping force coefficients for low fre-

quency excitations. Dynamic operation under these conditions will then result

in a whirl frequency ratio greater than 0.50, and consequently, it aggravates the

"hydrodynamic" instability problem since it reduces even further the safe range of

operating speeds of a rotor-bearing system. This important result, although first

reported by Redecliff and Vohr (1969), has been largely overlooked until recently.

Hydrostatic bearings for cryogenic liquids of low viscosity require large levels

of external pressurization to provide adequate load capacity and stiffness support.

Typical pressure drops across a HJB can be as large as 30MPa and under

these conditions the material properties of cryogenic liquids present substantial

variations. These considerations lead San Andres (1992a) to develop a complex

analysis for variable properties liquid HJBs. The fluid is regarded as barotropic

with material properties, density and viscosity, as functions of a characteristic

temperature and the local absolute pressure within the bearing flow region. Note

that the designation of barotropic applies only to the fluid and not to the flow

process within the fluid film bearing. The numerical model extracts the cryogenic

liquid properties from accurate 32-term thermophysical state equations as given

in the data base of McCarty(1986). Predictions of the isothermal analysis for

a typical liquid hydrogen HJB show that the fluid properties affect considerably

the static and dynamic force characteristics of the bearing and determine a whirl

frequency ratio much larger than 0.50 for centered journal operation. This result
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is a direct consequencethe fluid compressibility effect at the recessvolumesand at

film lands. Sumppressuresare relatively low at the dischargeside of the bearing

and determine small values of LH_ density with a consequent increase in the

axial velocity of the fluid. This effect then induces a large exit Mach number (M

approaching 0.60 to 0.80) which shows that the bearing operates close to sonic

conditions and may be accompanied by fluid vaporization. Dynamic operation

of a liquid bearing at such large Mach numbers is entirely unknown, and thus,

there is the urgent need to determinate experimentally whether test measurements

produce a similar dynamic force response as the numerical predictions indicate.

The barotropic-isothermal fluid model for turbulent flow HJBs has been

extended to include journal misalignment and dynamic journal axis conical

motions. The complex analysis determines rotordynamic force and moment

coefficients due to journal center displacements and journal axis rotations (San

Andres, 1993a). An approximate analysis for the HJB force and moment dynamic

response at the centered position is also available (San Andres, 1992b). Numerical

predictions show that journal misalignment angles in line with the journal center

displacement cause a reduction in load capacity due to the loss in available

film thickness. Journal axis misalignment increases slightly the flow rate and

produces significant restoring couples for large angular displacements as well as

large moment coefficients for large angular motions. The whirl frequency ratio

for conical motions is equal to 0.50 in the absence of rotor gyroscopic effects, and

therefore, identical to that of plain journal bearings.

It is well known in fluid film lubrication theory and rotordynamics that there

exists a trade off between the magnitude of the bearing static load capacity and

its dynamic stability characteristics. In general, a bearing designer "sees" the

need to reduce the former to improve the latter, or viceversa. Approximate
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formulae for the calculation of a break frequencyabovewhich stiffness hardening

and reduced damping occur in a compressible liquid HJB are available in the

literature (San Andres, 1990b, 1991a,1992b). Criteria to reduce the posibility

of "pneumatic hammer" and to eliminate the reduced damping factor due to

liquid compressibility effects are also formulated. In brief, improved dynamic

characteristics (low valuesof the whirl frequency ratio) are attained for bearings

with small recess volumes and very low values of the ratio between the pressure

differential across the bearing and the liquid bulk modulus. Other recommended

fixes to improve the dynamic characteristics of a hydrostatic bearing are:

o Use of large scale roughened bearing surfaces to reduce the cross-coupled

stiffness coefficients which are the direct leading agents in promoting hydrody-

namic bearing instability. Experimental results at Texas A&M show that a test

HJB with a rough knurled-pattern bearing surface has a WFR as low as 0.30 but

with a reduced load capacity and direct stiffness when compared to a smooth

surfaces HJB (Franchek et al., 1993).

o Use of wear rings (Scharrer et al., 1992b) or end seal restrictions (San

Andres, 1992b) to control bearing leakage, reduce the pressure differential across

the bearing and increase the damping coefficients. Wear rings can also add a

degree of safety for start-up and shut-down transient operation with potential shaft

to bearing contact. The operating principle of end seals has been taken from the

theory of shrouded pump-impellers (Childs, 1989). However, these wear ring seals

in HJBs can lead to a substantial reduction of the direct force stiffness coefficient

and static load support. Nonetheless, end seals of variable (controlable) restriction

may prove in the future to be very valuable as active devices capable of producing

load support and damping characteristics as desired within the environment of a

"smart" control rotor-bearing system.



10

o Use of tangential liquid injection opposing journal rotation to reduce the

development of the circumferential flow velocity and to practically eliminate the

cross-coupled stiffness coefficients.This concept yet lacks firm theoretical modeling

but has proved to be useful in some applications while disastrous in others.

However, recent experimental results at the hydrostatic bearing test facility at

Texas A&M University have shown succesfully that a tangential injection HJB

has a very low whirl frequency ratio without reducing the hydrostatic stiffness and

load capacity (Franchek et al., 1993). These experiments add to our knowledge a

conceptually simple fluid film bearing free of stability problems. Issues of concern

for this especial bearing geometry are related to increased power losses and the

posibility of inducing backward whirl in lightly loaded rotating structures. Braun

et al. (1993) and Hill et al. (1993) have recently presented simplified numerical

analysis relevant to non-radial fluid injection in laminar flow hydrostatic recess

regions.

o Bearing circumferential asymmetry has long been known to provide a

minimal reduction in the whirl frequency ratio of cylindrical journal bearings.

Elliptical and multi-lobe fixed pad bearing geometries have been the subject of

past interest until the advent of tilt-pad bearings which are inherently stable.

These bearings however are of large size, mechanically complex and present moving

pivoted pads which need to be frictionless to operate efficiently. Furthermore, tilt-

pad bearings present a dynamic response variable with frequency and coupled to

the pads motion. So far these considerations have prevented conventional tilt-

pad bearings to become suitable candidates as support elements in cryogenic

turbomachinery. The flexure pivot tilt pad bearing introduced by KMC Inc. may

overcome these problems (Zeidan, 1992). However, this type of bearing has yet to

be tested for identification of its dynamic force coefficients.
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Experimental results for the orifice discharge flow coefficients in a hydrostatic

bearing (no journal rotation) for laminar and turbulent flows in freon, oil and

gaseous nitrogen are given by Scharrer and Hibbs (1990). The experimental

results point out to the complex nature of the flow field in the orifice and recess

of a hydrostatic bearing and show that the orifice discharge coefficient is highly

dependent on the Reynolds number with no evident correlation to the bearing

clearance. The data presented is of utmost importance for the correct sizing of

orifices for hydrostatic bearings in a cryogenic application. Scharrer, Hecht and

Hibbs (1991a) present numerical results on the effects of bearing surface wear on

the rotordynamic force coefficients in a HJB. The analysis is based on the solution

of the turbulent flow Reynolds equation as given by the simplified model of Artiles

et al. (1982). The results show that bearing performance is relatively unaffected

by amounts of wear less than 10 percent of the bearing clearance. Direct stiffness

and damping coefficients are found to decrease dramatically with increased wear

while the cross-coupled stiffness is relatively unaffected. No results are presented

in terms of the whirl frequency ratio to determine if bearing surface wear degrades

the dynamic stability characteristics of a hydrostatic bearing.

Scharrer and Henderson (1992a) present a detailed study on the specification

and design of hydrostatic bearings for the STME fuel turbopump. The paper

describes the important characteristics of the turbopump and addresses with

detail to the major advantages of HJBs when compared to conventional roller

bearings. HJBs are selected to provide maximum life and design flexibility at

the minimum turbopump cost. A similar study for the design of a annular

hydrostatic bearing to be incorporated into the SSME HPOTP is given also

by Scharrer et al.(1992c). This bearing package designed to act both as a load

support element and a wear ring seal will replace the duplex ball bearing which
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has been the primary life limiting component in the turbopump. The analyses

of the static and rotordynamic characteristics of the hydrostatic bearings and the

annular hydrostatic bearings are based on the numerical models developed by San

Andres (1991c)and Yang et al.(1993a).

Fundamental transient operation tests for liftoff and touch-down operation

in a liquid nitrogen HJB are given by Scharrer, Tellier and Hibbs (1991b). A

test apparatus simulating the transients found in a typical cryogenic turbopump

was used in the investigation. Profiles of speed, pressure and radial load in the

tester reproduce those determined from an instrumented SSME HPOTP. The

experimental results show that a soft bearing material promotes early liftoff when

used in conjuntion with a journal of hard coating. Post experimental inspection

of the test especimens revealed unmeasurable wear for combinations of hard

journal with soft bearing materials; and, conclusively that hydrostatic bearings are

capable of surviving (repeated) start transients with similar loads as those found

in actual turbopumps. A similar experimental procedure for the start transient

performance of an annular hydrostatic bearing in liquid oxygen has been reported

recently by Scharrer et al. (1992d). The experimental results showed that the

fluid film bearing supported effectively the radial loads impossed and that liftoff

occured at speeds very close to predictions obtained using the analysis of Yang et

al.(1993a,b).

Although cryogenic liquids offer very small viscosities, the trends toward

higher rotational speeds and larger pressure differentials, as well as the implemen-

tation of intentionally roughened surfaces to improve fluid film bearing dynamic

stability, provide unique flow characteristics and operating conditions where high

levels of turbulence (energy dissipation) and kinetic energy exchange due to fluid

compressibility may determine significant thermal effects. Furthermore, hydro-
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static annular pressuresealsarealso under considerationas support elementsfor

cryogenic turbopumps. These type of damping bearings (Von Prageneu, 1982,

1990) require particularly rough stator (bearing) surfacesand increased axial

lengths to provide the necessaryload support. Theseconditions then lead to the

needof a thermohydrodynamic (THD) analysis in order to predict accurately the

static and dynamic forceperformancecharacteristicsof highly turbulent cryogenic

liquid HJBs and seals.

As stated earlier, cryogenic liquids present material properties strongly

dependent on their local state of pressureand temperature. In some cryogenic

turbopump applications, annular hydrostatic annular sealsmay be subjected to

axial pressuredrops aslarge as45MPa, and therefore, the working fluid presents

a wide spectrum of property changesacross the seal. Pressure variations are

most important on the viscosity and density changesof liquid hydrogen, while

temperature has a pronounced influence on the material properties of liquid

oxygen. The viscosity of liquid oxygen is an order of magnitude larger than

in liquid hydrogen, but the kinematic viscosity is about the samefor both fluids

for the range of conditions applicable in cryogenic environments. Mechanical

energydissipation in turbulent flows is a non-linear increasingfunction of the fluid

viscosityand the flow Reynoldsnumber; and thus, thermal effectsin liquid oxygen

sealsareexpectedto be of importance. This considerationbecomesfundamental

whenit is further known that the heat capacity of liquid oxygenis relatively small.

The understanding of thermohydrodynamic (THD) phenomenain hydrody-

namic bearingshasadvancedsteadily in recent years. A well documented review

of the related literature relevant to THD lubrication theory and experiments is

given by Khonsari (1987). The monumental work of Pinkus (1990) offers a com-

prehensive review and insight of the current problems and describes the needs for
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future work. The interested reader should refer to these publications for complete

information. The conventional THD theory of hydrodynamic bearings consid-

ers incompressible fluids of large viscosity (like oils), and thus, shows dominance

of circumferential flow effects. Most analyses consider the flow as laminar and

inertialess, and the axial variation of temperature is usually neglected. On the

other hand, the THD analysis of externally pressurized bearings such as HJBs and

damper seals needs to account for flow turbulence, fluid inertia and the transport

of energy in the direction of the pressure flow.

Isothermal-variable properties bulk-flow fluid film models for the analysis

of annular seals in cryogenic environments have been adopted by Simon and

Frene (1989) and San Andres (1991c, 1993b-c). These models still account for

the material properties variation and have been shown to be accurate for design

of liquid hydrogen seals as described latter. Yang et al. (1993a,b) have presented

the most advanced THD analysis for the turbulent bulk-flow of a real properties

liquid in an annular pressure seal of arbitrary non-uniform clearance. The thermal

model considers conservation of bulk-flow momentum and energy transport while

an adiabatic heat flow process is assumed for simplicity. The bulk-flow equations

for the zeroth-order flow variables are solved numerically to determine leakage,

fluid film forces and restoring moments. Dynamic force and moment coefficients

due to small amplitude perturbations in shaft center displacements and shaft

axis rotations are calculated from the solution of first-order flow field equations.

The material properties used for cryogenic liquids are determined from the 32-

term Benedict-Webb-Rubin equation of state as given in the standard computer

program of McCarty (1986).

Numerical results from the THD model correlate well with measured temper-

atures for the Preburner Impeller Rear Wear-Ring Seal of the SSME high pres-
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sure oxidizer turbopump. Calculations performed with the analysis of Yang et eL1.

(1993a) for a high speed, rough surface LOs seal predicted a large temperature

rise and the onset of two-phase flow conditions (liquid boiling) at moderate shaft

eccentricities despite the large pressure differentials impossed across the seal. It

is imperative to note that large temperature rises in a cryogenic seal can lead to

thermal solid distortions affecting the operating clearance and possibly causing a

significant reduction on the direct stiffness of the hydrostatic seal.

Two-phase (liquid-gas) flows are not desirable in cryogenic liquid fluid film

bearings and seals. A quote from Pinkus (1990) is the more explicit since "difficul-

ties attendant to the phenomenon of change of phase includes a negative stiffness

over certain ranges of operation, leading to unstable equilibrium and collapse of

the fluid film. Even when operation is possible, self-sustained oscillations may lead

to chatter, ultimately causing destruction of the seal". Pinkus also states that the

analysis of two-phase lubrication with cryogenic liquids is extremely complex due

to the "inadequate state of knowledge of certain branches of fluid dynamics in

general and the lack of basic experiments". Beatty and Hughes (1987, 1990) have

introduced fundamental studies on two-phase flow phenomena for steady state,

centered operation, annular seals with adiabatic surface considerations. The anal-

yses showed that viscous heat generation is the mechanism for limiting seal leakage

as the operating conditions are near two-phase regions.

Research is needed to develop a thermohydrodynamic model for the analysis

of turbulent single-phase and two-phase flows in hydrostatic bearings and annular

seals for cryogenic applications. Advanced analytical and numerical tools are

needed to predict accurately the steay-state and dynamic force response of rough

surface, fluid film bearings with significant levels of energy dissipation. Typical

hydrostatic bearings and annular seals in a cryogenic environment operate with
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large pressure differentials and, in some circumstances, the inlet temperature to

the bearing/seal is just a few degrees below the liquid saturation temperature. For

example, hydrostatic annular seals control effectively leakage and could also (in

the near future) replace conventional roiling element bearings as load support

devices in high speed turbopumps. Thus, the design of these seals (damper

bearings) calls for operation at moderate to large eccentric rotor positions in

order to generate adequate load support. On the other hand, these operating

characteristics generate the conversion to heat of mechanical energy due to the

hydrodynamic effects as well as that due to the macroscopic roughness of the stator

surfaces used. Recent experimental evidence from tests beds at both Rockwell and

NASA Marshall Research Center (Nolan et al., 1993) have shown that prototype

damper seals present a two-phase flow condition (flashing) of the liquid at the

discharge plane of the damper seal. Operation of actual turbopumps under these

conditions may be potentially catastrophic.
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SCOPE OF THE WORK IN 1993 (PHASE I)

The research progress presented in thisreport concentrates on the thermohy-

drodynamic analysis of real properties,fluidfilm bearings for cryogenic applica-

tions.The beating geometries of interestinclude hydrostatic bearings of arbitrary

recessgeometry, hydrostaticannular sealsand cylindricalrigid-pad bearings. The

motion of a cryogenic fluidon the thin film flow region is governed by a closed

set of mass and momentum conservation, and energy transport equations for the

primitive bulk-flowvariablesand, accompanied by thermophysical state equations

forevaluation of the fluidmaterial properties.The turbulent bulk-flow in the thin

film land regions is modeled with simple frictioncoefficientlaws including the

effectof macroscopic surfaceroughness. Zeroth-order equations describe the fluid

flow fieldfor a journal staticequilibrium position, while first-orderlinearequa-

tionsgovern the fluidflowfor small amplitude journal center translationalmotions

and journal axis conicalmotions. Solution to the zeroth-order flow fieldequations

provides the bearing flow rate,load capacity,restoringmoments and torque, and

the temperature fieldwithin the flow field.Solution to the first-orderequations

determines the linearizedforce and moment coefficientsdue to journal lateraland

angular motions.

On 1993 (Phase I),the analysis of single-row and side-to-sideparallelrow,

rectangular recesshydrostaticbearings,annular pressure seals,and fixedgeometry

journal pad bearings has been completed. Thermal effects (energy transport)

are considered in the fluidfilm bearing with thermally adiabatic solid surfaces

bounding the annular flow region, or isothermal journal and bearing surfaces.

The computer program developed named as hvdrosealt calculates:

1) bearing flowrate (seal leakage),

2) friction torque and temperature rise,

3) load capacity (fluid film forces) and restoring moments,



18

4) rotordynamic force coefficients due to journal center displacements,

5) rotordynamic force coefficients due to journal axis rotations,

6) rotordynamic moment coefficients due to journal center displacements,

7) rotordynamic moment coefficients due to journal axis rotations,

8) Complete pressure and temperature fields on the bearing surface, as well

as density and viscosity field variations, with ranges of fluid flow

Reynolds numbers and Mach numbers.

for isothermal or adiabatic journal and bearing surface conditions.

as a function of:

a) journal (rotor) center eccentricity and journal axis misalignment.

b) inlet specified circumferential pre-swirl velocity distribution.

c) general clearance function as defined below

d) mean surface roughness on bearing and journal film lands.

The fluid properties (density, viscosity and specific heat) are calculated from

the 32 term Benedict-Webb-Rubin equations of state as given by NBS Standard

Reference Database 12 (McCarty, 1986) for the following cryogenic liquids: LO_,

LH2, LN2, and methane. Other fluids included in the program are water, mineral

oils and air.

The program hydrosealt handles the following boundary conditions at the

bearing discharge (exit) planes:

1) periodic pressure asymmetry in the circumferential direction.

2) local discharge end seal effects via an orifice like model to simulate

end wear-rings in hydrostatic bearings or annular seals.

The axial clearance functions included are of the type:

a) uniform,

b) tapered,

c) stepped, or,

d) arbitrary via spllne interpolation, and,

e) tilted about any arbitrary axis for journal misalignment conditions.

The present computational research program needs support from a compli-

mentary experimental research effort directed to measure the dynamic force per-

formance of high speed, externally pressurized fluid film bearings with flow con-

ditions similar to those found in cryogenic environments. Some empirical flow
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parametersshould also be identified from the test data. These coefficients,like

orifice dischargecoefficients,recessedgeentranceloss factors, shearfriction coeffi-

cients, and thermal mixing grooveparameters are of fundamental importance for

the accurate prediction of the flow and force dynamics in high-speed, turbulent

flow fluid film bearings.
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ANALYSIS

Fluid Film Bearing Geometries

The following bearing geometries are considered in the analysis:

(1) Orifice-compensated hydrostatic journal/pad bearings (Fig.l).

The type of bearing being considered for use in the LH2 and L02 turbopumps

is a full, 360 ° hydrostatic journal bearing_ orifice compensated, with a variable

number of feeding recesses or pockets machined in the surface of the bearing.

Axial grooves may be designed in the bearing surface to improve the bearing

dynamic stability. The bearing surface may also be intentionally roughened to

reduce the cross-coupled stiffnesses and improve the bearing stability.

The bearing recesses have a depth larger than the radial clearance under the

film lands. Fluid flows from a high-pressure supply, passes through an orifice in

route to the recess and leaves the bearing sides by flowing through the thin film

gap. The surfaces of the journal and bushing are separated by a film of fluid

forced under external pressurization. When the center of the shaft is displaced

from the center of the bearing, on one side of the bearing the film gap is reduced,

while the gap is increased on the other side. On the reduced-gap side, the flow

from the recess to film lands is more restricted and the recess pressure rises. On

the opposite side, however, the flow from the recess is increased and the recess

pressure decreases. The difference between the pressures on the two sides results

in a net bearing film force which is equal and opposite to the externally applied

load on the journal. The hydrodynamic effect due to journal rotation increases the

fluid film forces but also introduces the potential of a self-excited whirl instability

at rotor speeds twice above the system first critical speed.

(2) Annular pressure (damper) seals or hydrostatic annular bearings (Fig.2).

Annular pressure seals are used in turbomachinery to limit the leakage
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of fluid from stages of high pressure to those of lower pressure. Like fluid

film journal bearings, annular pressure seals have a significant influence on

the rotordynamic stability of high-performance turbomachinery. Von Pragenau

(1982, 1990) proposed damping seals, i.e., annular seals using rough stators and

smooth rotors, to improve rotordynamic stability. In a damping seal, the average

tangential velocity induced by journal rotation and the cross-coupled stiffnesses

decrease. Scharrer et al.(1992a) showed that a damper seal (called a hydrostatic

annular bearing there) can also be used as a supporting element to replace a

current rolling-element bearing in cryogenic turbopumps.

(3) Cylindrical pad ]ournal bearings (Fig.3).

The working mechanism of a hydrodynamic journal bearing is different from

a HJB. The pressure generation in a hydrodynamic bearing is provided by journal

rotation and fluid viscosity. External pressurization serves only to provide enough

lubricant to the fluid film region. Therefore, a hydrodynamic journal bearing is

also called a self-acting bearing. Unlike a hydrostatic bearing, a hydrodynamic

bearing has no load capacity unless the journal rotates at an off-center position

(a wedge like hydrodynamic effect). The lack of hydrodynamics may lead to wear

damage during startup and shutdown transients.

For fixed pad journal bearings, feeding axial grooves are located at circum-

ferential locations away from the maximum pressure (minimum film thickness)

region. Feeding grooves supply fresh (cold) fluid to the bearing, i.e., provide the

required lubricant flow to the fluid film region and are critical in avoiding journal-

bearing overheating at high speed operation. Due to the low level of external

pressurization (relative to ambient conditions), the mass flow rate in a hydrody-

namic journal bearing is much smaller than in a HJB or an annular pressure seal,

and consequently thermal effects may be of great importance for fluids with low
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heat capacity. A too large temperature rise in the fluid film affects pronouncedly

the fluid properties, and hence the bearing performance characteristics. More im-

portantly, unequal thermal growth of bearing components can modify the fluid

film clearance and induce seizure. Bearings with compliant surfaces (foil bear-

ings) exhibit advantages over rigid surface bearings by accommodating thermal

distortion or mechanical deformation of bearing components and journal misalign-

merits. NASA currently sponsors the development of fluid-film foil bearings for

use in space shuttles and military missiles (O'Connor, 1993).

For all the three fluid film bearing configurations considered above, the flow

is confined to the thin film annular region between an inner rotating journal and a

non-rotating bushing. The fluid flow is characterized by high levels of turbulence

due to the high journal surface speed and/or the externally imposed large axial

pressure drop across the bearing/seal. Two different flow patterns are defined in

the analysis.

Flow On Film Lands

Fully developed, single-phase (liquid or gas), turbulent bulk-flow model;

Governing Equations:

Mass conservation equation

Momentum Bulk-Flow equations

Energy Transport equation

Turbulence Closure Model:

Bulk flow with friction parameters based on Moody's

friction-factor equation for physically sound characterization

of roughened surfaces.

Liquid of variable properties as functions of pressure and temperature with

realistic thermophysical equations of state



(for cryogenicfluids, seeMcCarty, 1986).

Flow On BearinK Recesses and Grooves
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Global mass conservation equation with liquid compressibility at recess-volumes.

Pressure rise/drop at edge of bearing recesses with a simplified

1-D Rayleigh step bearing model.

Global energy balance equations at bearing recesses and grooves to determine

entrance temperature conditions at the recess and boundaries.

Governing Equations for Turbulent Bulk-Flows

The motion of a fluid in thin film geometries is described by a set of mass,

momentum conservation, and energy transport equations for the primitive flow

variables, and accompanied by thermophysical state equations for evaluation of

the fluid material properties. The smallness of the clearance to radius ratio (c,/R)

allows the reduction of the general governing equations to the simplified forms

given on the film lands (Yang et al., 1993a): (Note: the nomenclature of this

report is provided in Appendix A)

Continuity Equation

op opO op9 op_v
O--[+--_z +--_-y + Oz -0 (1)

Circumferential.Momentum Equation

DO
P Dt -

OP Or,z
+ -- (2)

Oz Oz

Axial-Momentum Equation

D9 OP
P Dt - Oy

Oruz
+ o---;- (3)
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ob
oY = 0 (4)

Energy-Transport Equation (Bird et ai.,1960, Whitaker,1977)

DT p D -2

pep b-( + 5_(u
o o_ DP

+ _Z,--
Dt

_ (pop oP -_-; + 9-b-ju) + ° (ur_ + 9._)

(5)

on the flow region {x C (O,_rD),y e (--LL,LR),z E (O,H(x,y,t)), for journal

bearings and hydrostatic bearings, while y E (0, L) for annular pressure seals};

and where

D 0 00 0 0
Dt - Ot + Ox + 9-_y + ITVo--_ (6)

is the material derivative.

To undertake a study of the general equations (1)--(5) in their full three-

dimensional complexity is a difficult task, perhaps unnecessary to obtain mean-

ingful solutions in a reasonable time and at an affordable cost. Large pressure

gradients, typical of externally pressurized cryogenic bearings and seals, and high

rotational speeds generate large flow Reynolds numbers, and consequently, the

effect of turbulent mixing far outweighs molecular diffusivity. Thus, the tempera-

ture rise produced by viscous dissipation tends to be distributed uniformly across

the film thickness and hence temperature gradients in the cross-film coordinate

(z) are confined to turbulent flow boundary layers adjacent to the bounding (bear-

ing and journal) surfaces (Suganami and Szeri, 1979; Di Pasquantonio and Sala,

1984). Furthermore, in the absence of regions of reversed flow or recirculation,

the fluid velocity field presents the same characteristics as discussed above.

Let bulk-flow primitive variables be defined as average quantities across the



film thickness, i.e.

28

l j0- 1 /o H 1 _o H

Then, the considerations presented allow the governing equations (1) to (5) to

be integrated across the film thickness to determine turbulent bulk-flow equations

at each bearing pad configuration ('fang et al., 1993a):

Continuity Equation

O(pH) O(.H_;) O(pHV)-- -0 (s)
Ot + Oz + Oy

Circumferential-Momentum Equation

O(pHU) O(pHU2) O(pHUV) H OP
Ot + O_ + Oy - _ + _l°_ (9)

Axial-Momentum Equation

O(pHV) O(pHUV) O(pHV 2) HOP
ot + o_ + oy - _ + _zlo" (lo)

Energy. Transport Equation

[O(pHT) O(pHUT) O(pHVT)
Cp I Ot + Oz + Oy ]

1 r O(pHVt2) O(pHUV'2) O(pHVVt_)
+ -2[ Ot + Ox + Oy ] + Q"

OP OP OP tH"
= TI3_H--_- + (Tl3t- 1)H(U-_- z + Y-_-y ) + Rf_r_z

(11)

Note that Eqs.(9) to (11) imply "flat" bulk flow profiles characteristic of

turbulent film flows at high Reynolds numbers. By Neglecting the fluid-inertia

terms on the left hand sides of Eqs.(9) and (10), Eqs.(8) to (10) reduce to a single

lubrication equation--namely, the turbulent flow Reynolds equation.
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In the above equations, Vt = v/U2+ V 2 is the bulk-flow speed, r_l ff

and rw[o H are the wall shear stress differences in the circumferential and axial

directions, r_[ H is the shear stress on the journal surface in the circumferential

direction, and

Q,=hs(T-Ts)+hj(T-Tj) (12)

is the heat flux from the film to the bounding (bearing and journal) surfaces.

Further, ha and hj denote the bulk-flow heat transfer coefficients to the bearing

and journal surfaces (Appendix B). If the fluid-film temperature (T) is higher

than the bounding-surface temperatures (T B,TI) , heat flows from the film to the

bounding solids, and vice versa. For an adiabatic flow process, Q, = 0.

The fluid properties for a cryogenic liquid (density, viscosity, specific heat,

and volumetric expansion coefficient, etc.):

p = p(P,T), # = I_(P,T), Cp = Cp(P,T), /3_ =_3_(P,T) (13)

are determined from general 32-term thermophysical state equations as given by

McCarty (1986).

The wall shear stresses are calculated according to the bulk-flow theory for

turbulence in thin film flows (Hirs, 1973, Launder and Leschziner, 1978):

--,Io

rye]H-- H

]H _ HOP _H+ [Uk. - (V - Rfl)kj]

(14)

where the turbulent shear parameters (k_,kv) and (kj,ks) are local functions of

the Reynolds numbers and friction factors based on Moody's formulae (Massey,

1983).
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Substitution of the bulk-flow momentum equations (9), (10) into the energy

equation (11), and invoking the mass conservation principle given by equation (8)

allows the energy transport equation to be expressed as:

Cp[O(pHT) c9(pHUT) cg(pHVT)+ + ]+O.
0x 0y (15)

= Tt3t H ( cgP U OP OP iH

which reflects the energy balance in the fluid film as:

CONVECTION + DIFFUSION = COMPRESSION WORK + DISSIPATION

( Energy Disposed ) = ( Energy Generated )

The variation of temperature in the axial direction and the energy generated

by compression work are retained in the analysis due to the strong influence of the

large pressure drop across the length of a HJB or an annular pressure seal. These

conditions differentiate the present problem from conventional THD analyses of

viscous, incompressible fluids in journal bearings where the volumetric expansion

coefficient 13t is zero and temperature variations along the bearing axial direction

are usually considered negligible.

Governing Equations for Bearing Recess and Groove Flows

The analysis of turbulent flows in a HJB recess is complicated and not yet

fully understood. To date, only two-dimensional laminar flow numerical solutions

are available for rectangular recesses (See, for example, San Andres and Velthuis,

1992, Hill et al., 1993, Braun et al. 1993). While the actual prediction of flow

fields in the recess may give a better description of the recess-film edge boundary

conditions, the global mass and energy conservation principles at the recess are

shown to be both efficient and accurate in HJB analysis. The study of the flow field

in a bearing recess is a subject which requires detailed experimental results since
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analytical or full 3-D numerical solutionscan not model efficiently the complexity

of this flow field dominated by both surfaceshear(rotation) and induced external

pressureflowsof strong turbulence character.

• Mass Conservation at a Recess

The continuity equation at the recess is defined by the global balance between

the supply mass flow rate (Qi_), the outflow into the film lands (Q_) and the

temporal change of fluid mass within the recess volume (Y_). The recess flow

continuity equation is expressed as:

or,. / OP OT \

Qi,., = Q_ + p,.-_- + p,.V,. _,3p---_- - 3t __-),. (16)

where the flow through the orifice restrictor is

= A0 x/2p.(P, - P,.), (17)

and

Q,. = / pH(lJ. 6)dr (18)

is the mass flow rate across the recess boundary (F,.) and entering the film lands.

1 cOp 1 cOp

P
(19)

are the liquid compressibility factor and volumetric expansion coefficient, respec-

tively. In general,

=0
1 1

/"IP '/'pt -- P' T

>0

for incompressible liquids;

for ideal gases;

for cryogenic liquids.

(20)

In HJBs, the compressibility of cryogenic liquids has been shown to promote

pneumatic hammer, a class of self-excited instability mechanism as described by

San Andres (1991).
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• Global Energy Balance Equation at a Recess

The energy transport phenomenon in a HJB recess is controlled by the follow-

ing three mechanisms: the carry-over of hot fluid from upstream to downstream of

the recess, the mixing of fresh fluid from the supply source into the recess volume,

and the heat generation in the recess volume due to shear dissipation by journal ro-

tation. Energy transport produced by pressure gradients, kinetic energy changes,

and heat conduction are considered negligible due to the uniformity of pressure

and the large mass flow rate through the recess. Based on these considerations,

the general three-dimensional energy equation (5) reduces to

pC;, DTDt - OzO(Ur_z + l_vyz) (21)

Invoking the continuity equation (1), Eq.(21) can be written as

Cp [---_ ÷ e • (pV_b)] = 0-0_(/]'r_ + l_ry_) (22)

where V = {U, V, W} (23)

Integration of Eq.(22) over the recess volume gives the global energy balance

equation which reflects the heat carry-over (advection) and mixing effects, and

the friction heat generation (dissipation) in the recess (Fig. 4) (Cp is regarded as

constant for simplicity in this part of the analysis):

(24)

where

_a,,_ = (pUH@)d,= and m,ia, = (pVH6z),i,_ (25)

are the mass flow rates over edge differential segments. The summation (_--_) is

over each recess edge, and the subscripts "u", "d" and "side" refer to the upstream,
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downstream, and side (axial) edges of a rectangular recess, respectively.

the total mass flow rate through the supply orifice, and

T[,,. = r_.4_R
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Qi,_ is

(26)

is the drag torque over the recess with volume V,.. The left hand side of Eq.(24)

represents the temporal variation of energy in the recess volume and the energy

flow rate out of the recess, while the right hand side denotes the energy influx and

the dissipation of mechanical energy.

Our purpose here is to obtain the recess-edge temperatures which serve as

boundary conditions for solution of the thermal field on the film lands. The

temperatures at all the recess edges and within the recess can be obtained from

the global energy equation for different recess flow conditions. Since the global

energy equation involves the time (t) as a parameter, different treatments are

needed for the zeroth- and first-order temperatures produced by the perturbation

analysis. Appendix C provides the formulas for calculation of the zeroth- and

first-order recess/edge temperatures.

• Global Energy/Flow Balance Equation at a Groove

Axial bearing grooves (Figs.1 or 3) are used for different purposes, such as to

feed the bearing, to improve stability of a HJB by providing bearing asymmetry,

or to remove foreign particles in the lubricant. A groove is usually narrow (small

circumferential width) and deep (depth much larger than the film thickness).

Therefore, the grooves are treated separately from the film lands.

At an axial groove, the flow mixes and energy transfer occurs with cooling

of the pad leading edge flow if the bearing is properly designed. The problem is

complicated and subject to empiricism. Here a global model using averaged flow

variables along the groove edges is implemented.
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Fig. 5 presents the conceptual description of global energy balance at a

groove. The energy transport phenomenon in a groove is controlled by the carry-

over of hot fluid from the upstream pad to the downstream one, and the mixing of

fresh fluid from the supply source into the groove. The global energy conservation

equation at a groove is given as (Cp is regarded as constant here):

c, Z mdTd: C,Z m T. + C,Q,.T,. (27)

where rhd and rh_ are the mass flow rates over edge differential segments as

given by Eq.(25), and the summation (y'_)is over the downstream (leading) and

upstream (trailing) groove edges. Also,

Qi,_ = Z _ad - _ m, = Qa - Qu (28)

represents the net mass flow rate through the groove, providing the minimum

flow rate required to prevent starved lubrication for a journal bearing with a

single feeding groove. Td and T_ represent the temperatures at the downstream

and upstream groove edges, and Tin is the temperature flowing with mass flow

Qin •

If the mass flow rate leaving the trailing edge of the upstream (relative to the

journal rotation) pad to the groove is greater than zero, i.e.,

Q,, = _ m_ > 0, (29)

then, the fluid temperature at the trailing edge can be found by their upstream

values given by the solution on film lands (upstream pad):

T_, = Upstream Film Values on Upstream Pad (30)

Temperatures at the downstream edge (leading edge of the downstream pad) can

be obtained for different flow conditions in the groove:
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(a) If Qd = _ rhd > Q,,, i.e., Qi,_ > 0 and flow is supplied into the groove,

then the flow entering the downstream edge of the groove is the combination of

the upsteam (Q_) and the groove supply (Qi_) flows (Fig.5b), and an averaged

uniform downstream-edge temperature (Td) can be obtained from the mixing of

upstream and inlet temperatures:

A _ rh_,T_
Td - (1 -Od + (31)

where 0.4 < A < 1.0 is the mixing coefficient, a participation ratio of the hot

lubricant (recirculating fluid) in the mixing process (Mitsui et al., 1983).

Ti_ = T, (32)

that is, all make-up flow in the groove is at the fluid supply temperature.

(b) If Qd < Q_,, i.e., Qir_ < 0 and flow is discharged out of the groove, then

two cases may occur. First, a fraction of the upstream flow enters the downstream

pad (Qd > 0)(Fig.5c). Then, the leading edge temperatures(Td) are equal to the

trailing edge one s (T,_). Second, both edge flows enter the groove (Q_ > 0 and

Qd < 0) (Fig.5d) and the temperatures on both edges can be obtained from

thermal solutions on their respective pads. These two cases are typical of HJBs

and represented by:

{_T_,Tg = Upstream
if Qd > 0 (Fig.5c);

Film Values on Downstream Pad, if Qd < 0 (Fig.5d). (33)

• Recess/Film Entrance Pressure Rise/Drop at HJBs

For purely hydrostatic operations, a uniform recess pressure is desirable

not only to simplify the HJB design (and analysis) but also to increase the

load capacity. A uniform recess pressure can be achieved by deepening the

recess. However, a minimum recess volume is required to avoid the characteristic
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pneumatic hammer instability problem in HJBs. Design criteria for uniformity of

recess pressure and pneumatic hammer instability are given by Redecliff and Vohr

(1969), and San Andres (1991a, 1992b).

For hybrid operation of a HJB, a pressure rise due to the journal rotation is

produced in the downstream portion of the recess (Ho and Chen, 1984, Chaorrdeffel

and Nicholas, 1986). San Andres (1992a) considered this region as a one-

dimensional step bearing and evaluated the pressure rise just in front of the

downstream recess edge (Pz) as (Fig. 6):

PC- = P_- 2H_(I-MT) _)-- " ( " >

P.,

where

in x direction;

in y direction

(34)

0 = v:+ vL % = nn_"+ 0L (35)

k,. ,-, 0 8sl/7.753 is a turbulent shear factor at the bearing recesses, 7713Le v" =

H/(H,. + H) is the ratio of thicknesses at film land and recess depth, and

M,. = aRf_v/-3_ is the recess flow Mach number for hybrid operation.

The local acceleration of fluid from the deep recess to the film lands causes a

sudden pressure drop at the recess edges (Fig. 6). The pressure at the entrance to

the film lands is modeled by simple Bernoulli type relations based on the turbulent

flow theory developed by Constantinescu and Galetuse (1975):

peP+ = Pc- _ (1 + _i)(1 + _i)[1 - r/z( )]([_. _)2; (IA. 6) > 0 (36)

where

_ = {C:,;_}= {1.95/Re°"3,0}, (37)

(38)
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are the empirical entrance loss coefficients and rl is the normal vector to the recess

boundary (F_).

The pressure at the entrance of an annular pressure seal can be obtained

similarly by using a Bernoulli type relation. The corresponding expression is

given latter in the boundary-conditions section.

Dimensionless Governing Equations at Film Lands

Dimensionless coordinates and variables are defined as follows

z y H

2=--. 9= R c.R' --; h= --; r=wt;

U V P - P_ T
--* __.

U=u.' V=u.' P= Ap ; T=T.' (39)

p # Cp

; Op= ;

and U, = _._aP
tz.R

is a characteristic speed due to pressure induced flow with Ap = p, - p,_ for

externally pressurized bearings (HJBs and annular pressure seals). If P_ = Pa,

like in a pure hydrodynamic bearing, the characteristic speed is set equal to the

journal surface speed

U. -- R_ (40),

and

R 2

AP = #.i2(_-) . (41)

In dimensionless form, the governing flow equations at the film lands are

written as:

Continuity Equation

( hu) + ( hv) + o"O'#h-------_')(= 0; (42)
Or



Circumferential.Momentum Equation

-h_ = fi (k_u- kjAh-_) + Re, _---_(fihu) + Re;[_(fihu2) + -_(fihuv)]O

Axial-Momentum Equation

-hoy = -_(kyv) + Re, (fihv) + Re;[ (fihuv) + (fihv2)J ;

Energy- Transport Equation

C,Re, (_h_) + CpRe,[ (_hu_) + (_h,_)] + Re;Q,

=Ec{_th( Op Op Op h A Op

# 2 1 1 A2 _ uA)] }+ _[k_(v_+ _uh) + kj(_

The dimensionless flow parameters are defined as
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; (43)

(44)

(45)

Rw RI2 U2,

_=_-_--. ; A=-U-_-. ; EC=T.C----_p:;

.. . (_)Re, - P*WC2* -_rRep, Rep = p.U.c, c.
#. #. ; Rep = Rep

In externally pressurized bearings the frequency (a) and speed (A) numbers

denote the importance of squeeze film and hydrodynamic flow effects relative to the

pressure induced flow, respectively. The reference Reynold numbers (Rep) denotes

the ratio of fluid advection forces to viscous flow induced forces. In most HJBs,

flow turbulence is produced by the Poiseuille flow due to the high pressure drop

across the bearing length. The ratio of (Rev/E¢) or (Re_/E¢) may be interpreted

as the effect of heat convection relative to shear dissipation. The Eckert number

(E¢) denotes the ratio of kinetic energy to heat convection in the fluid film.

Dimensionless Governing Equations at Recesses



In dimensionless form, the governing equations at recesses are written as:

Mass Conservation at a Recess

qi,_= q,. + _,--g_- + _p,(3p_ Op"Or

where
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(46)

qi,_ = 6. V/fi_(1 -p_) for orifice flow

q,. = f fih ( _ . fit) dF,.,

5. = Ao#. V_/[c3. _],

/3p,. =/3v,.AP ,

_,_ = A,.T. ,

% =

(47)

(48)

(49)

(50)

(51)

(52)

(53)

The orifice parameter 5. is a design variable to determine a certain recess

pressure ratio at the desired operating condition, and thus determines the size of

the orifice restrictor. The major uncertain factor in the orifice parameter 5. is

the value of the orifice discharge coefficient Ca which is highly dependent on the

local Reynolds number in the orifice feeding hole as well as on downstream flow

conditions. In general, Cd takes values ranging from 0.6 for sharp edged orifice

configurations and highly compressible fluids, to 1.0 for highly turbulent flows and

reduced orifice length-to-diameter ratios (Redecliff and Vohr, 1969). However,

the experimental measurements performed by Scharrer and Hibbs (1990) show

that the discharge coefficients can be as low as 0.3 for large pressure drops in

hydrostatic bearing geometries handling cryogenic fluids. Extensive experiments

show that the discharge coefficient (Cd) takes values between 0.75 and 0.95 for
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water HJBs with different clearance,orifice diameters, and operating conditions

(Kurtin et al., 1993,Franchekand Childs., 1993,and Mosher, 1993).

The frequencyparameter at a recessvolume (A1), like o', denotes the ratio

of squeeze film flow to the pressure induced flow. _p_ is the dimensionless recess

volume-liquid compressibility factor, which should be small to avoid pneumatic

hammer instability at low frequencies (Reddecliff and Vohr, 1969, San Andres,

1991). A combination of large compressibility and frequency parameters,/Jp,, and

A1, could bring undesirable hardening stiffness and substantial loss of damping

at high excitation frequencies (Rohde and Ezzat, 1976, Ghosh et al., 1979,1987).

Note that the introduction of temperature variation in the recess may mitigate or

deteriorate the pneumatic instability problem depending on the sign of a_', (see-g-g-

Eq.(46)).

• Global Energy Balance Equation at a Recess

o'CpV,. --
_T

= Op( Z ¢nuTu + qin) + (_':"_*)Ec/Re*p

where

(54)

T_ -
c.APR_ , (55)

is the dimensionless torque over the recess area.

• Global Energy Balance Equation at a Groove

where

Z rhaTd = Z rhu2u + qin'Ti,, (56)

qin = Z _nd --Z _nu = qd -- qu (57)



If flow leaves the traling edge of a pad then
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q= = E r_u > 0, (58)

so that

T_ = Upstream Film Values on Upstream Pad (59)

and the dimensionless temperatures at the downstream edge of a feeding groove

are given by:

(a) If qa = _ Znd > qu, then

qd

where

+ (1- (60)
qd /

(b) Ifqa < q,_, then

Tin = 1.0;

Upstream Film Values on Downstream Pad,

(61)

if qd >_ 0; (62)
if qd < O.

where

Recess/Film Entrance Pressure Rise/Drop

Pr_

(_.,_) > 0, in x direction
(63)

in y direction;

p+ = p[ _ Cj__:(,_. _)2 (_. a) > 0
2

=uz+vj, -_=A_'+0 ,

¢,. = k,.(b/D)(Tl/h) 2/(1 - M_)

¢i = ¢:.,y = Re;(1 + (,,y)(1 + _,,_)[1 - (qfi_/fi_)_]

(64)

(65)

(66)

(67)
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Perturbation Analysis

A perturbation analysis separates the governing equations into zeroth- and

first-order equations. The zeroth-order equations describe the fluid flow field

for a journal static equilibrium position, while the first-order linear equations

govern the fluid flow for small amplitude journal center translational motions and

journal axis conical motions. Solution to the zeroth-order flow field equations

provides the bearing flow rate, film forces and load capacity, restoring moments

and torque. Solution to the first-order equations determines the rotor dynamic

force and moment coefficients due to journal lateral and angular motions.

Fig. 7 illustrates the journal translational and rotational motions in an

annular seal. The inertial coordinate system {X,Y,Z} helps to define the position

of the spinning journal. For steady state operating conditions, the journal is at

an equilibrium position given by two journal center displacements (exo , %o), and

by two angular rotations (6x0, _y0) about {X,Y} axes and centered at the axial

coordinate Z0, as shown in Fig. 7. Note that the origin of the inertial coordinate

system in a HJB is different from that of a seal. For HJBs, the Z axis starts at the

mid-plane of bearing recesses (San Andres, 1993a). The angles bx0 or 6y0 define a

misalignment condition for the journal axes relative to the stator. Superimposed

on the static equilibrium position, the journal describes motions of small amplitude

(Aex, A%, Fig.7a) as well as angular rotations of amplitude (A6x, A6r, Fig.7b)

with center at Z0. The film thickness is given by the superposition of steady-state

(h0) and dynamic (hi) components, and represented in dimensionless form by the

real part of the following expression:

h = h0 + hi (6S)

ho =a-o +[exo +'Sro(Z- Zo)/C.]COSS+ [%o-6xo(Z- Zo)/C.]sin_ (69)
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hl = ei"[(Aex cos0 + ,.l_ r sin0- RA_x (2,- Z0) sin 0 + RA_r (2_ 20) cos 01 (70)
C* C.

and Z0 :Z0/R, r=,,t, i: _ (71)

where 0 = 2 = z/R is the dimensionless circumferential coordinate in the

unwrapped fluid film plane (refer to Figs. 1 to 3), 2 = Z/R the dimensionless

inertial axial coordinate, and _0(y) is a general function that describes the

clearance variations in the axial coordinate.

For small amplitude motions, all the dependent variables (p,u, v, f') as well

as the fluid properties (/_,/2,/3,etc.) are expressed as the superposition of zeroth-

and first-order fields representing the steady state and dynamic motion conditions,

respectively. In general, we let

¢=¢o+ _ _x%+A_.¢y+_¢6_ +
C, C.

where

_%)=¢o + _,_% (72)

¢ = u'v'P':F'fi'#,_t,k*,k_,...,etc, and J = X,Y, 6x,8r (73)

Expansion of the governing equations in the perturbation variables yields the

dimensionless zer0th- and flrst-order flow equations presented in Appendix C.

Boundary Conditions for the Flow

The boundary conditions for both the zeroth-order and the flrst-order flow

variables are given and discussed for the three different configurations. The first

set refers to a circular (360 °) bearing, the second one to a characteristic bearing

pad, and the third set to an annular pressure seal.

Boundar Conditions for a circular 360 ° bearin

(a) On the 360-degree extended film land, the pressure, velocity, and tem-

perature fields are continuous and single-valued in the circumferential direction:

 0,p0, =  0,p0, t0( + (74)
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uj, v_,pj,Hj(e,_) = uj, vj,pj,H_(e + 2_,_) (75)

(b) At the bearing side discharge planes, the fluid pressure is equal to

specified values of discharge or sump pressures if no end restrictions are present,

i.e.,

po(_,lR)= p.(_) (76)

p0(_,-tL) = pL(_) (77)

In general the discharge pressures are uniform and constant. However, in

some cryogenic turbopump applications the bearing may be located close to the

pump-impeller discharge. In this case, the sump pressures are non-uniform but

rotationally symmetric. The model expresses the discharge pressures in a series

form given as:

E rt rtPn = Pno + Pnc cos(riB) + Pns sin(riB) (78)
rt-._.l

7l

PL = PLo + E PLcC°S(nO) + PLssin(nO) (79)
n----1

n n terms correspond to the Fourier coefficients of a series expansionwhere the P L' P R

of the non-uniform discharge (sump) pressures.

A value of dynamic pressure (pj, j = X, Y, 5x, 5v) equal to zero is imposed at

all locations where time invariant pressures are specified, i.e.

pj(_,tR) = 0 (80)

pj(_,-t_)=o. (81)

On the other hand, if end seals or wear rings are present at the discharge

sides of the bearings and the fluid flows out of the bearing to the sump conditions

(V. _ > 0), then there is a pressure increase (ram pressure) at the discharge sides:

1
- * 2

po(_,,ln) = pn(_) + -_poKnRevvo]t_,_ ' if vo],R,,_ > 0 (82)
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po(_, -lL) = pL(_) + -_;o_CLRepvof-LL,_,

1 S •
Pj(_,IR) = _ RRevvo(2fioVj + pjvo)lzR,e,
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if v0I-_L,_ < 0 (83)

if v01t_,_ > 0 (84)

w

pj(2,-lL) = -_lCLR¢pvo(2fovj + pjVo)[-IL.e, if v01-lL,e < 0 (85)

where ]CR,ICL are the end seal discharge coefficients at the right and left sides

of the bearing, respectively. Typical values for ]C range from 1.0 to 4.0 (Childs,

1989). However, applications such as those with wear end rings of tight clearances

present larger values of ]C's (Scharrer et al., 1992b).

The temperatures at the discharge planes can be obtained from their upwind

values on the film lands (Roach, 1976).

Boundary Conditions for a Bearing Pad

At low rotational speeds, the pressures at the side boundaries of the pad

(Y = -lL g5 lR) are essentially constant and equal to specified values of ambient

or sump pressures, similar to those for a circular (360 °) bearing. A linear

pressure distribution is assumed along the leading and trailing edges of the pads

(downstream and upstream edges of the grooves).

On the other hand, significant momentum changes occur at the pad leading

edge at high journal surface speeds. The fluid entering the film lands at the leading

edge is assumed to have a dynamic head equal to some fraction of a reference

dynamic pressure based on the bearing surface speed (Burton and Carper, 1967;

Smalley et al., 1974; Mori et al., 1991; Ettles and Cameron, 1968), i.e.,

np0(_nt_,, 9)= 5JCv_oR_; (86)

pj(_'...,,¢) =0 (87)
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The coefficient (/Cp) is an empirical (experimental) ram pressure factor.

Burton and Carper (1967) suggest a value of K_p = 0.64 for high speed flows
with large turbulent levels.

Across the line, -lr_ < _ < ln, at the pad leading edge the flow is regarded

as parallel to the bearing pad, i.e., the axial velocity is null:

vo(2i-,- 9) 0
(88)

vi(*i_te,, 9) = 0
(89)

Temperatures at the leading and trailing edges of the pads are given by the

global energy balance equation at a groove for different flow conditions as shownbefore.

Boundar Conditions for an Annular Pressure Seal

The periodic boundary condition in the circumferential direction also holds

for an annular pressure seal (see Eqs.(74) and (75)). Boundary conditions at the
seal inlet and exit planes follow:

(a) Due to fluid inertia, the local acceleration of fluid from relatively

stagnant conditions at the upstream seal region to a high velocity at the seal

inlet causes a sudden pressure drop. The entrance pressure at the seal inlet plane

(7=0) is modeled by a simple Bernoulli equation:

P01 =P0(_',0)=l_ctvfi01v_01 if v01 >0;

Pjl -- Pj(_,O) = --O_Y_Ol(2_OlVj 1 "_ VOlPJ 1)

The inlet circumferential velocities are given by

1

_ = 5( 1 + _)Re; (90)

if Vol > 0 (91)

u01 = uo(_, O) = aA ;
ujl = uj(_, O) = 0 (92)



where a is a pre-swirl factor, and "1" denotes the seal entrance location.

The entrance bulk-flow temperatures are equal to (Yang et al., 1993a)

v 2
?01= f0(_,0)= 1- 01(1

-_--, + _)[1 - (1 - _t)_ol]Ec,

/_jl = -(1 + _)EcVol[vjl - (1 - _t)(_0_vjl + pjlVOl/2)J if v01 > o.

For incompressible liquids, _t = 0 and _01 = 1, therefore,
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(93)

(94)

7'01 = 1 and _Bjl ---- 0.

For ideal gases, 1 - _t = 0, therefore,

0 2
¢ol = _o(e,o)= 1- ol(1

--5-" +¢)Ec and

(95)

Tjl = -(l+_)EcVolVjl if Vol > 0.

(96)

(b) At the seal exit plane (_ = L/R), the discharge pressure for subsonic

conditions is:

po(_,L/R) = PR; p_(_,L/n) = 0 (97)

If an end seal or wear ring is present, the discharge pressure can be treated in the

same way as for end seals in a HJB.

Other Boundary Condition_

If the bearing is symmetric both in geometry and operating conditions, then,

the axial velocity and the axial gradients of all the primitive variables are zero at

the circumferential central plane (_ = 0) of the bearing:

v0(_,0)=0 (98)

v_(e,o)=0

duo clpo dl'o x,
_---i-' a--V' -_ (- o) = o

(99)

(100)



dpj = 0
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(lOl)

Heat Transfer Between Fluid Film and Bounding Solids

Temperature boundary conditions at the fluid-journal and fluid-bushing

interfaces are modeled by heat transfer to the journal and the bearing (Qs by

Eq.(12)) and directly incorporated into the energy equation (11) (Constantinescu,

1973).

An adiabatic flow process (Qs = 0) is shown to be a reasonable approximation

for turbulent flow HJBs and annular seals with large pressure drops across

the seal/bearing length. In such conditions, the heat generated in the fluid

is carried away mainly by fluid advection while heat conduction through the

bushing/stator is relatively small. The adiabatic flow assumption greatly simplifies

the analysis, and numerical predictions based on this assumption correlate well

with experimental data (Yang et al., 1993a,b).

Regarding pad journal bearings without external pressurization, the adiabatic

flow assumption is highly conservative. Without significant supply flow of fresh

fluid into the fluid film, hot lubricant recirculates in the journal bearing and

causes a much larger temperature increase than in a HJB or an annular pressure

seal. Heat convection by the side (axial) flow is greatly reduced and heat transfer

between the fluid film and the bounding solids is significant for this bearing

configuration.

Different THD models exist to address the heat transfer from the fluid film

to the bounding solids. In a full THD analysis, the solution of the Reynolds

equation (or the continuity and the Navier-Stokes equations) is coupled to the

energy equation in the fluid film and the heat conduction equations in the solids.

This coupling leads to a nonlinear iterative problem which is costly and may be
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sensitive and prone to numerical instabilities. Another shortcoming of the full

THD treatment is that the bearing pad is never an isolated, single component

but part of an assemblythat includes bearing liner, housing, pedestals,and seals,

often made of different materials (Pinkus, 1990). Therefore, a full THD solution

is strongly machinedependentand not considerednecessaryin the context of the

current analysis.

More simplified heat conduction modelshavebeenusedto treat the heat flow

in the journal and bushing. Safar and Szeri (1974) consideredthe journal to be

isothermalat the meantemperature of the bushinginner surface. Radial heat flow

into the bushingof a hydrodynamic journal bearing wasconsideredasa reasonable

approximation ut this might lead to error in the calculatedmaximum temperature

in the fluid film. This over-simplification allowscalculation of the global heat flow

from the heat source(fluid film) to the heat sink (ambient) even for composite

bearing assemblies. Suganami and Szeri (1979) found that at high rotational

speedsan adiabatic journal surfaceassumption might be more appropriate than

the isothermal surfacesinceheat generation in the fluid film is largein comparison

with the heat capacity of the journal and the time available to absorbthis energy
is short.

In this analysis and the computer code being developed,different simplified

THD modelsare adapted (Fig. 8). Options included are:

(a) Adiabatic journal and bearing surfacesQs = 0,

(b) Adiabatic bearing and isothermal journal surfaces, Qs = h.z(T- Tj),

(c) Adiabatic journal and isothermal bearing surfaces, Q_ = hs(T- Ts), and

(d) Isothermal journal and bearing surfaces (T = To,,ppl_ ).

A more detailed model including radial heat transfer through the sleeve or

stator will be a subject of investigation on Phase II (1994) of the present work.
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Film Forces, Torque, and Dynamic Force Coefficients

Once the zeroth-order and the first-order equations are solved, the static and

dynamic performance characteristics of the bearing can be evaluated. Fluid film

forces and moments are calculated by integration of the pressure field over the pad

surfaces. The components of the static equilibrium force and moment are given

by:

_0 --_Z [ [ _: s_nO_O_ /10_)
k=l J--lLdO

and

I I N_d lR O_od I
Mxo - sin _ ]_,_0--_'_ Z f f _(2- 20) _ o_)

_=1 J-w/o cosO J (1

where p0k corresponds to the zeroth-order pressure field for the k-th pad.

The perturbation analysis allows the dynamic force and moment coefficients

due to journal center displacements and journal axis rotations to be obtained from

the general expression for dynamic force given as:

Fx
Fr

Mx

My

I Yxo
Fro

Mxo
Myo

[ Kxx

_ IKYx

[ K6:_

L K_vx

Cxx

Cyx

C*XX

CG_

"Mxx

My x

M6X. _

MGx

Kxy Kx6 x

Kyy Ky6 x

K6_ K6x 6_
K_ K_._

CXy CX6 x

Cyy Cy6 x

C6_ C6x6x
C 6r_ Car 6x

Mxy Mx6 x

My y My 6x

M_xz M6 x 6x

M_,.r M_6 x

Ky_ A%

Cx_'] [ a6
Cr_ A@
Cs_@ A_x

c_ La%

(104)

The dynamic-force coefficients defined by Eq.(104) are important measures of

dynamic bearing performance since they influence the critical speeds, the resonant

amplitude response, and rotordynamic stability of the rotor-bearing system.
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The aboveexpression(Eq.(104)) allows the dynamic force coefficients to be

calculated from integration of the first-order complex pressurefield (pj) over the

pad surfaces. The force coefficients due to journal center displacements are defined

by the following relationships (San Andres, 1993a):

Npad

c. = a-lJo p_hidOdg; i,j = X,Y

The force coefficients due to journal axis rotations are equal to

(105)

Np ad l R Opad

Ki6,-_2Mi6,+i_Ci6, =-AP R3 _ i f _ hidOdg; i,j = X.y (106)
C. = d _lLd 0 P6j

The moment coefficients about Z0 due to journal center displacements are

given by:

Z_l'p a d

c. = a--_LaO P (Z-Zo)h6, dOdg; i,j = X,Y

(aoT)

and, the moment coefficients due to rotor axis rotations about Z0 are equal

to

K6.6j - _o2 M6_ 65+ iw C6, 6,

where

= -Ap C. = J --lLdO

k (Z-Zo)h6, dOdg;P6j i,j = X,Y

(108)

hx =hG =cos0, /9 =-h6 x =sin0 (109)

It is noted that the characterization of force coefficients in terms of stiffness,

damping and inertia parameters is appropriate for incompressible fluids only.

For highly compressible liquids and gases, the force coefficients are themselves

functions of frequency.
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The friction torque is given by integration of the wall shear stress at the
journal surface over the pads as

iVp_ _LR R#

k=i -LLU0 ": Cli0)

NUMERICAL SOLUTION PROCEDURE

The governing equations presented above are nonlinear, and therefore, diffi-

cult to solve analytically. Numerical methods are then needed to obtain meaning.

ful solutions. A finite-difference scheme has been implemented to solve the cou-

pled, non-linear PDES of mass and momentum conservation and energy transport.

The procedure is based on the forward marching scheme presented by Launder

and Leschziner C1978) and uses the SIMPLEC algorithm of Van Doormaal and

Raithby (1984). The algorithm has been adopted by San Andres C1992a ) and

Yang et al.C1993a ) to solve the barotropic and THD fluid-film-flow problems in

HJBs and annular pressure seals. Appendix D presents the discretized algebraic

set of equations used for solution of the flow field in fluid film bearings.

The computer program hydrosealt was completed on 1993 for the analysis

of turbulent flow cryogenic liquid bearings, hydrosealt handles iosthermal and

adiabatic flow models with variable properties for cryogenic liquids. In general,

the analytical bearing model and computer code calculate:
Ca)

(b)

Cc)

bearing leakage,

(d)

(e)

friction torque and temperature rise,

load capacity (fluid film forces )and restoring moments,

rotordynamic force coefficients due to journal center displacements and
journal axis rotations,

rotordynamic moment coefficients due to journal center displacements and
journal axis rotations,
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(f) stability indicators such as whirl frequency ratios for lateral and conical

journal motions, and equivalent bearing stiffness,

(g) completepressure,velocity, and temperature fields on the flow region, aswell

as density and viscosity distributions.

The hydrosealt has been developed in standard Fortran 77 in a SGI 4D-

35 computer. A detailed User's Manual and Tutorial accompany the hydrosealt

program (San Andres, 1993d) A great number of cases has been run to test

the hydrosealt code. Comparisons show that for LOs damper seals, results

from hydrosealt code are the same as those from a especialized seal code (Yang

et al., 1993a). For the single-row, five-recess water HJBs tested at Texas A&M

University, predictions from the hydrosealt code show good agreement with the

results from experiments. Refer to the Examples Manual of hydrosealt for a

description and discussion of the examples presented (San Andres, 1993e).
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The analysis presents a general thermal flow model for the static and dynamic

force and moment response in fully developed, variable properties, turbulent flow

fluid film bearings. The bearing geometries of interest correspond to hydrostatic

journal pad bearings (HJBs), annular pressure seals or damper bearing seals, and

fixed arc pad journal bearings.

Numerical predictions from the present THD model and prior analytical de-

velopments have been presented in several earlier publications. The analytical ef-

fort has always stressed in presenting comparisons with experimental results when

these have been available in the open literature. San Andres et a1.(1991c, 1993b)

and Yang et al.(1993a,b) present results for the effects of journal misalignment and

thermal effects in annular pressure seals, respectively. Kurtin et a1.(1993), Mosher

(1993) and Franchek et a1.(1993) present a direct comparison between experimen-

tal measurements of the static and dynamic force response of a 5 recess, water

hydrostatic bearing with numerical predictions from the present model. Yang et

al. (1993c, d) also present comparisons between the TI-ID adiabatic and isothermal

models predictions with experimental results for turbulent flow liquid hydrogen

and water HJBs, respectively. In all cases the correlations with the experimental

measurements are reported to be good and provide validity for the analysis.

This section presents results for several relevant fluid film bearing applica-

tions. Many more examples are discussed in the hydrosealt Examples Manual (San

Andres, 1993e). The first example studied refers to a direct comparison between

the load capacity and rotordynamic force coefficients for a hydrostatic bearing

and a damper bearing seal operating in liquid oxygen. The HJB and damper seal

have been designed to replace the duplex ball bearings next to the left inducer in

the liquid oxygen high pressure turbopump (LO_ I-IPOTP). The fluid operating
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conditions (pressure and temperature) as well as the actual bearing clearance, and

most importantly, the load supported by the bearings are a function of the rotating

speed of the pump. Information relevant to the load characteristics in the HOPTP

were obtained from Shoup (1993) and the fluid operating conditions directly ex-

tracted from the technical report of Heshmat (1991). The hydrostatic bearing

has 6 recesses of rectangular shape and orifice restrictors, while the damper seal

consists of two parallel annular seals of convergent tapered clearance and sepa-

rated by a deep feeding central groove (Von Prageneu, 1990). The damper seal

has a rough stator surface of the knurled type while the hydrostatic bearing and

journal surfaces are perfectly smooth. This type of damper seal geometry is also

known as an annular hydrostatic bearing (Scharrer et al., 1992c). Table 1 shows

a description of the bearing geometries, and it also presents the actual clearances,

supply and discharge pressures and supply temperature for liquid oxygen, and

the nominal load acting on the bearings as the operating speed increases from

14,035 cpm to 30,367 cpm. Note that the load and pressures are proportional to

the second power of the rotational speed. At the nominal operating conditions,

here taken as 26,000 cpm, the nominal clearance in the HJB is equal to 0.175

ram, while the inlet and exit clearances in the damper seal are equal to 0.221 mm

and 0.129 mm (ratio = 1.715) with an average clearance identical to that of the

hydrostatic journal bearing.

The hydrostatic bearing is designed for operation at the nominal speed with

a concentric pressure ratio equal to 0.60 to provide maximum direct stiffness

coefficients. On the other hand, the ratio of inlet to discharge clearance in

the damper seal has been optimized to also obtain the largest direct stiffness

coefficients. The maximum specific load (load divided by bearing projected area)

is equal to 6.55 MPa (950 psi) and 7.22 MPa (1048 psi) for the hydrostatic bearing
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and parallel damper seals for load support in LOx HPOTP.

Hydrostatic Bearing: Number of recesses Nrec = 6

Diameter (D) Lenqth (L) Clearance (C*) Recess Depth
85.1 mm 48.85 mm 175.2p.m 5081.tm

(3.35 in) (1.92 in) (6.9 mils) (20 mils)

journal and bearing surface conditions:smooth.
L/D=0.57; Hr/C=2.9, I/L=0.5, Recess area ratio=0.25, C/R =0.0041
Orifice Cd=0.90; diameter do = 4.44 mm

Recess edge coefficients _xu=O.O; _xd=0.50; _Y"-_).O

Axial Lenqth(l) Recess Ar,,

24.42 mm 30 deg

(0.96 in)

X

Pamper Seal: Two parallel seal land (2 x L)
Inlet

.Diameter (D) Len,qth (L) Clearance

85.1 mm 22.2 mm 221.3pm

(3.35 in) (0.874 in) (8.7 mils)

journal smooth, bearing rough, r/h = 0.044 (Knurled)
Entrance coefficient (_y==0.25

(groove width unspecified)

Exit Average

Clearance Ratio Clearancr, _ii;_
129.1#m 1.71 175.2#m

(5.08 mils) (6.9 mils)

Operatinq Conditions.

Speed Psupply Pa Tsupply Tsat Load

cpm MPa K K N

14,035 16.00 1.654 102.77 128.9 5,828
19,732 29.59

26,000 39.60

28,340 43.60

30,367 55.69

Average
Reynolds# Clearance*

Rec (p.m)
72,816 180

100,700 177.7

130,130 175.2
143,720 174.3

147,600 173.2

1.792 107.22 130.5 11,519

2.089 110.55 133.7 20,000

2.434 111.33 137.0 23,762
2.551 115.00 138.0 27,282

Inlet swirl ratio (x,= 0.50

LO2 (liquid oxygen) at 110.6 K (200R)

P (ka/m3) _ (E-3 Pa.s)
1134.4 0.177

1038.1 0.124

Cp(J/kq-K)

1,606.4

1,827.2

_---L ---._

Y
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and damper seal, respectively. These specific loads are very large considering the

nature of the bearing application with a fluid of very low viscosity such as liquid

oxygen. The calculations for the static and dynamic performance characterictics

of the HJB and seal are performed using the adiabatic journal (rotor) and bearing

(stator) thermal model. Numerical calculations for the damper seal are performed

only for the thin land portion and then multiplied by two. The central groove and

its effect on load capacity and dynamic force coefficients are altogether neglected.

This oversimplification seems appropriate as a first attempt to correlate the

performance of the HJB and seal. However, it is now known that central feeding

grooves do have a pronounced effect on the dynamic force response of fluid film

bearings, in particular with regard to inertia and cross-coupled damping force

coefficients (Arauz et al., 1993, Lindsey, 1993).

Figure 9 depicts the fluid supply temperature, bearing load and pressure

drop across the HJB and seals as the rotational speed of the pump increases. The

largest load of 27,282 N (6,137 lbs) corresponds to the highest operating speed.

The Figure also shows the values of the nominal circumfererential flow Reynolds

number Rec=p.Rl_c./#. to range from approximately 70,000 to 150,000 as the

rotor speed rises. The flow in the bearings is then turbulent. Figure 10 presents

the HJB and damper seal flow rate and drag torque as the journal speed increases.

The hydrostatic bearing (h) shows approximately 14 percent more flow rate than

the damper seal (s), while it produces approximately 27 percent less drag torque

than the seal at the largest operating speed. These results are a direct consequence

of the rough stator surface in the damper seal.

Figure 11 presents the journal operating eccentricity and attitude angle as

well as the maximum temperature rise in the HJB and damper seal as the

operating speed increases. Note that as the speed rises so does the applied load



t._
O0 63

0
0

0

0...

r'r"

0

I::

,..o i_

3o

_0
_.....I
o
"o o

e-

_o
iu

E>

.__o

mm

oel:l 'sj. 'ed-Sd 'peo-!



Lf)
CO 64

V

VVVVVV

0
0 _

0

"a_

m m

m

o_
m

o _.
k.

>
"o

4) c

[3"
Lm
o--_

o)
,- u)

(J

r-
m{D
4).-..

_o._
u.

O
0

(W'N)enbJoZ '(s/6_t)t_Ol=l '(NM)peo-I



65

at a rate proportional to the journal speed squared. The load for the HJB is

directed towards the bottom of a bearing recess (X direction). The dimensionless

journal eccentricity has been determined as the ratio between the journal offcenter

displacement divided by the nominal clearance at 26,000 cpm, i.e. 0.175 mm. Note

that the attitude angle is less than 10 ° for both bearings and the journal eccentric

displacement is rather moderate considering the magnitude of the loads applied.

The low value in the attitude angle indicates dominance of hydrostatic effects

over hydrodynamic effects. The maximum temperature in the film lands of the

hydrostatic bearing and seals increases rapidly with journal speed. The HJB shows

a larger thermal differential between the bearing supply condition and discharge

planes. The results also indicate that both HJB and damper seal operate well

below the critical LO_ temperature of Tc = 154.6°K (278 °R)

Figures 12 to 14 present the synchronous stiffness, damping and inertia force

coefficients versus the rotational speed for the HJB and damper seals, respectively.

Note the similar values between all direct coefficients (say Kxx and Krr) and cross

coupled coefficients (say/(a-r and -Krx ) which denote that the HJB and damper

bearing seal have very uniform force coefficients as the operating eccentricity (and

load) increases with the operating speed. Figure 12 shows a HJB with slightly

smaller direct stiffness coefficients (Kxx and Krr) than the damper seal, while its

cross-coupled stiffness (Kxa ") is larger. Note the dominance of hydrostatic (direct)

coefficients over the cross-coupled coefficients induced solely by journal rotation.

Figure 13 shows the HJB to have larger direct damping coefficients (Cxx and

Cry ) than the damper seals (approximately 47 percent higher). These results

produce at the largest journal speed a whirl frequency ratio (WFR) equal to 0.39

and 0.45 for the HJB and damper seal, respectively. Thus, in this example when

the inlet swirl ratio is equal to 0.50, the HJB offers slightly better dynamic stability
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characteristics than the parallel lands damper seal.

Figure 14 shows the damper seal direct inertia force coefficients (_lxx and

Mrv) to be the on the order of 1.5 kg and large in relationship to the I-IJB direct

inertia coefficients. The reason for this lies on the tapered geometry of the damper

bearing seal with a small clearance at the exit plane. The cross-coupled inertia

coefficients (Mx, r and Myx) are small in nature. Here it is noted that in practice

the direct inertia coefficients for the damper seal will be much larger than the ones

predicted. The central feeding groove will act as a parallel inertia and compliance

to the seal lands, it will increase the value of the inertia coefficients, and reduce

substantially the direct dynamic stiffness of the damper seal. Experimental results

showing this behavior have been given recently by Lindsey (1993).

The example demonstrates that a properly designed HJB or a parallel damper

bearing seal can support easily the loads expected in the LO_ HP turbopump.

The results show that the I-IJB and seal will operate at low eccentricity ratios

with uniform force coefficients. The case studied shows an important application

of the hydrostatic principle where good engineering practice utilizes the available

pressure differential in a cryogenic turbopump to provide a reliable fluid film

bearing support. It is worth noting that the original test case included a three

pad journal bearing with a clearance similar to that of the HJB but with a

bearing preload of 0.076 ram. The results are not reproduced here because the

journal bearing offered a very low load capacity in comparison with the HJB and

damper seal, and it also produced a rather large temperature rise. Details of these

calculations can be found elsewhere (San Andres, 1993e).

Adams et al. (1992) presented experimental results for the force coefficients

of a four pad, one recess/pad, hydrostatic bearing operating at low speeds and

using motor oil SAE 30 at (T = 38°C) as the working fluid. Table 2 shows the
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geometry and operating characteristics of the HJB test article with four recesses

of large area and depth. The maximum operating speed is equal to 2,000 cpm and

the circumferential flow Reynolds number is equal to 23.0. The flow conditions

clearly specify a laminar flow regime without significant fluid inertia effects at

film lands and recess edge on the forced response of the bearing. Adams et al.'s

tests derive from an experimental research program whose results may be used

for extrapolation of the dynamic force performance in high-speed, turbulent flow

hydrostatic bearings in cryogenic turbopumps. Adams et al. present the force

coefficients in graphical form versus the amplitude of a dynamic eccentricity

used in the experimental procedure. The numerical predictions are based on

the adiabatic thermal model with the journal center operating at the concentric

position.

Table 3 presents a comparison between the predicted values and the experi-

mental force coefficients determined by Adams et al. The values for the measure-

ments correspond to average values along with the largest positive and negative

deviations from the average number. The numerical predictions show a good

agreement with the experimental results although the latter show very wide vari-

ations. Very similar numerical results were obtained for a flow model with isother-

mal characteristics. The hydrostatic bearing of Adams et al. (1992) demonstrates

that the bearing flow rate and direct stiffness coefficients are not affected by ro-

tational speed. On the other hand, the cross-coupled stiffness coefficients are

directly proportional to journal speed. The results are representative of laminar

flow hydrostatic bearings and can not be extended to turbulent flow operating

conditions. Inertia coefficients are not reported here. Added mass coefficients are

difficult to calculate (and measure) accurately for small values of the squeeze film

Reynolds number (Res). The experimental results for inertia force coefficients
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Table 2. Geometry and Operating Conditions of

Bearing from Adams et al. (1992).

Number of Pads: Npad = 4, Number recesses/pad Nrec = 1

Four Pad Hydrostatic

Diameter D Len th L clearance C len th l de th Hr
114.7 mm 53.98 mm 210.8p.m 35.56 mm 4.763 mm

(4.51 in) (2.12 in) (8.3 mils) (1.40 in) (0.187 in)

Pads:

Recess:
circumferential length ep=80.50 deg, groove width = 9.50deg.

circumferential length er=56.deg.

L/D=o.47, 1/L=0.659, E)r/Op=0.696 , Area Ratio=0.459, C/R=0.0037, Hr/0=22.6

journal and bearing surface conditions: _smooth.

Orifice Cd=l.00, diameter do=1.s92mm for concentric recess presure ratio pr=0.40,

Recess edge coefficients _xu=0.0; _xd=0.00; _y==0.0,

Pad leading edge coefficient,K=0.64

ODerating Parameters:

Rotational speed: 1,000 and 2,000 cpm

Pressure supply, Ps=1.206 MPa (175psig),

exit, Pa= 0.00 MPa ( 0 psig)

Recess Pressure,Pr=0.483 MPa (70psig),

2.586 MPa (375psig)

1.034 MPa (150psig)

Fluid: SAE 30oil at 310K (100F),JLls=0.09787Pa_s, ps=pa=890.00 Kg/m3

TYP Reynolds numbers-

Recirc=p.QRc/_s=11.5 (lkcpm), 23.0 (at2kcpm)

Reaxial=m/(2_DR Ma)=4.03 (Pr=70psig), 8.64 (Pr=150psig)` I_.t:'t,I/A,r._R/'¥,OW
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seem to be erroneous with identified magnitudes as large as 100 kg. Figure 15

shows the calculated pressure field at the concentric position for the four pad

hydrostatic bearing studied. The figure depicts a pressure field typical of a pure

hydrostatic bearing without fluid inertia effects.

Hydrodynamic journal bearings, in particular those of a compliant bearing

surface nature, are currently a subject of attention for cryogenic applications

(Heshmat, 1991). Experimental results for static and dynamic force performance

characteristics in pure hydrodynamic journal bearings with cryogenic liquids have

not been reported in the open literature. The interested reader needs to refer

to the literature review provided by San Andres (1993f) on the subject of foil

bearings.

The present THD model for journal bearings is used to analyze an axially

grooved journal bearing as tested by Tonnesen and Hansen (1981). The published

experimental measurements are very complete and detailed. This test bearing has

then become an ideal example to validate THD models by several researchers (see

Knight and Niewiarowski, 1990). Details of the bearing geometry and operating

conditions are given in Table 4. The calculations are performed at a journal

speed of 3,600 cpm with external loads directed towards the bottom pad and

equal to 5,600 N and 8,600 N. The bearing analyzed handles a viscous lubricant

and the smallness of the film clearance and rotational speed determine laminar

flow conditions. For the calculations the adiabatic flow assumption was used

although this is too crude since the measurements definitely show there is heat

flow through the bearing surfaces and rotating journal. A groove mixing coefficient

()_) equal to 0.80 was used on the calculations as derived from the experimental

results. Numerical predictions for the bearing centerline dimensionless pressure

and temperature are shown in Figures 16 and 17, respectively. Table 4 also
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Table 3. Performance Characteristics of Four Pad Hydrostatic Bearing at

eccentricity ex=0.0, Comparison to test results from Adams et a1.(1992)

Speed Precess Orifice Flow Torque temperature

. Kcpm MPa do(mm) kcl/s N.m rise(oC)
1.0 0.48 1.59 0.285 1.556 1.05

1.03 1.93 0.616 1.543 4.26

2.0 0.48 0.285 3.100 1.10

Reynolds # Squeeze

Min/Max Reynolds Res.
2.66/9.59 0.042

8.32/15.26 0.084
1.03 0.612 3.102 1.10 5.10/19.51

_Stiifness Coefficients

Speed Precess Kxx KYY KxY

Kcpm Mpa MN/m

1.0 0,48 26.28 26.28 4.06

KyX

1.03

2.0 0.48

-4.07 predicted
21.17+2.46 22.32+3.28 5.25+1.15 -3.05+1.28 experimental

-1.97 -1.66 -0.82 -0.88

56.16 56.20 4.94 -4.78 predicted

44.81 +8.86 43.66+5.58 5.91 +1.97 -4.27+3.28 experimental
-5.42 -3.28 -2.95 -2.62

26.00 26.00 8.19 -8.19 predicted
19.17+1.84 22.76+2.45

-1.84 -2.80
1.03

7.88+1.57 -7.35+1.57 experimental
-1.58 -2.10

55.76 55.76 7.99 -7.98 predicted

41.50+8.40 45.34+9.28 9.80+3.85 -9.80+4.55 experimental
-5.25 -5.95 -3.50 -4.90

Dampinq Coefficient_

Speed Precess CXX CYY Cxy CYX
Kcpm Mpa KNs/m

1.0 0.48 78.08 79.07 0.30 -0.29 predicted

experimental65.65+10.10 70.70+10.00 2.81+12.3 -4.33+4.32

-5.06 -10.10 -9.54 -8.65
1.03 77.76 78.00 -6.47

48.91+24.25 64.74+31.00 -67.7+37.4

-27.03 -15.50 -48.0
2.0 0.48 78.38 78.37 0.41

5.98 predicted

-30.25+20.80 experimental
-82.30

-0.40 predicted
76.30+6.63 75.62+25.85 13.78+10.54 -0.21+6.29

-5.30 -15.92 -13.79 -3.43
1.03 78.14 78.12 0.58

experimental

-0.58 predicted
67.34+1.68 87.54+53.90 -10.10+33.7 20.2+10.1

-3.37 -30.30 -20.2 -3.36
experimental

Experimental values obtained from graphical values shown by Adams et al. (1992).

Values refer to average quantities with maximum and minimum deviations from average.



Npads=4 1 recess�pad, L= 114. 71mm, D=53.97mm, 1=35.56mm,

Or R--56. 134mm, c=210.8mm, Hr/c-22.5,
groove width=9.525mm, recess Area ratio=0.4590
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Rocess land

Ps= 1.206MPa(175psig), PR=O.482MPa(70psig), 1000 rpm,

[luid: oil SAE 30, 37.5C (IOOF), _=O.097Pa-s, p=890kg/m3

Rec=11.50, Rernax=13.37, Q=0.286 kg/s, do=1.59mm, Cd=l.0

Figure 15. Pressure Field in a 4 recess Hydrostatic Pad Bearing

Concentric Position. Adams et ai. (1992) bearing
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includes a comparison of the predicted values from the present adiabatic THD

model with the experimental measurements. The pressure plot shows the top

pad to be unloaded and the bottom pad carrying the applied load with a small

fluid cavitation zone close to its trailing edge. The temperature plot shows the

lubricant temperature to increase steadily on the loaded pad and then remaining

uniform once fluid cavitation starts. The temperature remains uniform and

larger than the groove supply temperature on the unloaded pad. The numerical

predictions are very similar to those provided by the more advanced models of

Lund and Tonnesen (1984) and Knight and Niewiarowski (1990). The correlation

of present predictions with the experimental values is considered surprisingly good

considering the crudness of the cavitation model used and the oversimplification

in the thermal analysis. Dynamic for coefficients were not determined in the

experimental work and also not reported here for brevity. However, the force

coefficients for the case studied can be found elsewhere (San Andres, 1993e).

The last two examples have discussed predictions relevant to a laminar flow

hydrostatic bearing and a laminar flow two-pad journal bearing, respectively.

The present numerical model is able to predict with accuracy the experimental

results for these laminar flow bearings. The examples demonstrate the generality

of the analysis and also validate the computational model for applications to

conventional (traditional) lubrication problems.

Braun et al. (1987b) introduced a comprehensive THD analysis for cryogenic

liquid hydrodynamic journal bearings. A variable-properties Reynolds equation

was coupled to a 2-D energy transport equation on the fluid film region. The

heat transfer to the bounding solids (shaft and bush) was analyzed in its three

dimensional complexity. Bulk-flow heat transfer coefficients were used to represent

the boundary conditions at the fluid/solid interfaces. Braun et al.'s analysis
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Table 4. Geometry and operating characteristics of axially grooved

journal bearing from Tonnesen and Hansen (1981).

2 pad iournal bearinq:

Diameter D Len th L Clearance C* Pad Arc

100 mm 55 mm 69.0 ,u.m 170 deg

(3.93 in) (2.16 in) (2.71 mils)

Gr.._oove width

10 deg

journal and bearing surface conditions: _ I.JD=0.55; C/R=0.0014

Thermal mixing groove coefficient _ 0.80

oil atinlettemperature 50 C (122 F) and Psupply=0.14MPa (20.3psig)
P (kQ/m3) p {Pa.s) Cp(J/kq-K)

850 0.0182 2,000

850 0.0056 2,000

ODeratinq Condition" journal speed 3,500 cpm

Load = 5,600 N

Case e/c

THD soln. 0.53
Min T_ Max P_ Pad

63.22 64.50 0.14 # 1 cavitated

55.60 72.23 2.58 # 2 loaded
58.00 62.00 0.14

57.50 72.00 2.60

experimental 0.56

Load = 8,600 N
Case e/c

THD soln. 0.63

experimental 0.66

Max P
63.10 64.70 0.14 # 1 cavitated

55.50 75.10 4.31 # 2 loaded
58.00 not given 0.14
57.50 74.00 5.10

4.30
predicted by Lund & Tonnesen (1984)

Pad #__ p

.!_d

Pad # 2



cO

I I

I

I

......,,,
....".,,..,.,..,._ Q.

A

n_

I,=,,

0
0
0

r-
_)

"-!
0
L_

0

C)

I

78

¢o
In
f,o

•
mo

==I
%" •

._oo

.=-
O.,=.

• {n
O d)
0 ,--

O
>,,-.
.__ ¢_

¢13
{o

_p

_'_-

_m
0

I,=.

IT"

H sseu_lo!ql UJl!t pue dCl/(ed-d) eJnsseJd



'Ir"-

0
0
LO
+

CO

CO
r,_
o,I

II
r_
I--

13..

'T"--

(5
II

I:L

I I i

O0
O0

II II I

v

e-

E

(/)

E
E
O
}-..

I I I

cO (D _- L_J

o o o (5
E)

79

l.o

tD
ILp

•." C_
0

_..I
.Q

o

o c
2®

--- e-
ra O

_.E
E_

L-- e-

_1111

11

sJ./O I.X(S/-.L) eJn_.eJedLue..L eu!lJe_,ueo



80

regards the fluid flow as laminar, although large journal rotational speeds were

considered in the application studied. The bearing geometry and operating

conditions for the bearing studied by Braun et al. are given in Table 5. The

journal bearing has a very small clearance equal to 0.0254 mm (0.001 in). At the

rotational speed of 14,000 cpm the circumferential flow Reynolds number is Rec

= 12,027 with fluid properties evaluated at a supply pressure and temperature

equal to 1.72 Mpa (250 psi) and 111°K (200°R), respectively.

The results presented by Braun et al. are most peculiar since they show

a temperature field (Fig. 5 of cited reference) which is a maximum at the

bearing center line and decreasing towards the axial discharge planes. Also

the temperature field does not show a zero temperature gradient at the bearing

centerplane as theory requires. Another shortcoming for the referred THD analysis

is related to the adiabatic (journal and bearing) model used for a full 360 ° journal

bearing as the calculations suggest. In a continous journal bearing without any

feeding grooves, the adiabatic model is physically incorrect since, as the flow

equations also show, the fluid at the bearing circumferential middle plane is

"trapped" because the axial pressure gradient is null at this location. For this

flow condition, a fluid particle at the midplane rotates ad-infinitum around the

bearing and its temperature should increase without bound. These statements are

by no means trivial since they were discovered (and thought over) after a long and

tedious unsuccesful attempt to reproduce the results given in the cited reference.

For the calculations presented here it was decided to keep the adiabatic model

(insulated journal and bearing surfaces) but to have the journal bearing with a

feeding groove of arc length 10 ° at an angular location equal to 70 ° as shown on

Table 5. The thermal mixing groove coe_cient (A) used in the calculations is

equal to zero, i.e. only fresh fluid at the supply temperature enters the bearing



Table 5. Geometry and operating charac - .

journal bearin,., o ...... tenstms of a hydrodynamic. u p_ratlng With li "
appfication nre,_.-.., .... quid o gen

r- "_'-eu oy Braun et al. (lx9Y987b) Data from an

Lenr, th _L' Cle
76.2turn --76" _ _,, Ulearance C p,,.., -

(3.0 in) o._ mm 25.4 jura _u Arc Groove width

(3.0 in) (1.0 rail) 350 deg 10 deg at e=70 deg

Journal and bearing surface COndilions: _ L/D=1.0; C/R=0.00067

Thermal mixing groove coefficient __ 0.00

LO2 (liquid Oxygen)

111.1 1.723 1,033 121.9
(200 R) (250 psia) 1,836.8

at SUpply (inlet) COnditions

LO2 critical temperature and pressure: 154.8 K (278.6 R), 5.083 MPa (737.4 psia)

-_Oeralinq Condition. jOurnal speed 6,000 and 14,000 cpm. Load varies

Nominal circumferential flow Reynolds # (Rec) = 12,027 at 14 kcpm

feeding _ Load

groove
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downstream of the feeding groove. The value used is rather conservative but highly

recommended as it would become evident latter. Preliminary calculations with

the hydvosealt program showed that the temperature within the fluid film region

increased rapidly and this caused the saturation pressure of the liquid to drop

sharply. For example, at a temperature of 111°K the liquid saturation pressure is

equal to 0.582 MPa and much lower than the feeding groove pressure (1.723 MPa).

However, at a film temperature of 126°K the saturation pressure is only 1.425 MPa

and very close to the feeding pressure. It is well known that journal bearings are

able to produce hydrodynamic pressures above (positive) and below (negative)

the reference supply value. Liquid flashing (dispersion into a gaseous phase) is

caused since these "negative" pressures can not be lower than the liquid saturation

pressure. Here we will refer to this phenomena as some sort of cavitation since the

computer model is unable to distinguish between liquid boiling (two-phase flow)

and actual liquid cavitation. For the 14,000 cpm example, the cavitation pressure

is set equal to the supply pressure (1.72 MPa) in the results that follow. On the

other hand, for 6,000 cpm operation, the cavitation pressure is equal to 1.0 Mpa.

Table 6 provides a summary of the results calculated with the present analysis.

Two models are considered (a) adiabatic journal and bearing surfaces, and (b)

isothermal bearing without thermal effects. The calculations are performed for

two loads equal to 2.5 KN and 5.0 KN. Figure 18 shows the centerline pressure field

and temperature for the two loads considered. The pressure and temperature fields

are symmetric about the bearing midplane with the temperature field varying very

little in the axial direction. At the largest load considered (5.0 KN), the maximum

temperature predicted within the fluid film is equal to 127.5°K, i.e. 16.4°K above

the supply value, and the operating journal eccentricity and attitude angle are

equal to 0.371 and 77.2 °, respectively. On the other hand, the results of Braun
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Table 6. LOx hydrodynamic journal bearing. Comparison of results for two

applied loads. Adiabatic and Isothermal models and calculations from
Braun et al. (1987b).

Cases

B Predictions from Braun et al. (1987o), (*) denotes no values available

A Present model • adiabatic journal and bearing surfaces with variable fluid properties
I isothermal conditions with variable fluid properties
N artificial setting of laminar flow and no fluid inertia

Journal Speed: 14,000 cpm

Load Case e/c _ Torque Max P Max T Reynolds #

N (o) N.m MPa °K .max / min
2,500 A 0.191 90.0 1.80 2.52 126.6 9,050 6,013

I 0.213 86.2 2.03 2.55 111.1 7,290 4,733
5,000 A 0.371 77.2 1.84 3.44 127.5

I 0.381 77.0 2.08 3.48 111.1
B 0.700 66.1 * * 115.7

10,613 4,919

8,298 3,723

Load Case Kxx Kyx Kyy Kxy Cxx Cyx Cyy
N MN/rn KN/s

2,500 A 50.1 -431.1 98.0 465.8 604.0 -32.9 625.2 205.6

I 25.8 -401.8 109.5 504.7 658.1 __5.0 587.2 255.5

5,000 A 158.9 -416.4 266.6 634.7 777.0 96.9 689.9 372.0

I 156.8 -354.0 256.4 674.4 843.5 108.4 598.3 391.0
51__02 B 22.9 -255.1 533.6 522.8 *

Cxy

Load(N) Case Mxx Myx Mxy Mw (kq)
2,500 A 58.1 --4.0 59.0 8.6

I 59.5 0.9 48.6 4.1

5,000 A 59.0 -2.8 53.9 13.4

I 60.3 0.2 40.3 3.4

Journal Speed: 6,000 cpm

Load Case e/c _ Torque Max P Max T Reynolds #

N (o) N.m M.__Pa °K max / min .
2,300 A 0.423 94.2 0.47 2.20 119.0 3,959 1,607
2,292 B 0.700 90.0 * * 112.0 *

Load Case Kxx Kyx Kyy Kxy Cxx Cyx
N MN/m KN/s

2,300 A 9.3 -194.5 4.55 283.6 710.9 -106.6 878.3

Cyy

2,292 B 0.0 -128.9 0.00 323.4 *

N 6.9 -134.9 8.40 329.6 436.4 50.4 1382.0

Cxy

33.4

74.8
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et al. analysis show an operating journal ecentricity equal to 0.7 and an attitude

angle equal to 66.06 o with a maximum film temperature equal to 115.8°K. The

differences noted between the two TttD analyses are easily explained since Braun

et al's model considers the flow as laminar without fluid inertia effects. Dynamic

force coefficients are given in Table 6, while Braun et al. only report values for the

stiffness coefficients. It is also worth noticing that the results from the adiabatic

and isothermal models are very similar although the thermal field is quite different

for both models. A groove mixing coefficient (A) larger than zero will cause the

temperature rise in the fluid film region to be larger than the ones presented.

Results for operation at a journal speed equal to 6,000 cpm and a load equal

to 2,300 N are also shown in Table 6. The maximum temperature predicted by

the present adiabatic model within the fluid film is equal to l19°K, i.e. 7.9°K

above the supply value, and the operating journal eccentricity ratio and attitude

angle are equal to 0.423 and 94.2 ° , respectively. The bearing shows no cavitation

and the attitude angle is larger than 90 ° due to the effect of fluid inertia. On the

other hand, Braun et al. results present an operating journal ecentricity equal

to 0.70 and an attitude angle equal to 90 ° with a maximum film temperature

equal to l12°K for a load equal to 2,292 N. Again, the difference in results is

explained by the absence of fluid inertia and turbulence flow effects in the cited

reference of Braun et al. It is also noted that calculations were also performed for

a journal bearing with laminar flow conditions by artificially reducing the density

of the liquid. In this case_ the numerical results render a load of 2,600 N at

an eccentricity ratio equal to 0.70 with stiffness coefficients very similar to those

reported by Braun et al. (Table 2, 1987b).

The last example presented refers to a three-pad journal bearing operating

with liquid oxygen. The geometry and operating characteristics for the rigid
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pads bearing are given in Table 7. The data has been taken directly from

Heshmat (1991). The example discusses the bearing load performance at a journal

speed of 29,830 cpm for two different TI'ID models, namely (a) adiabatic or

insulated journal and bearing surfaces, and (b) isothermal bearing surface at the

supply temperature and adiabatic journal. The bearing clearance is rather small

(C=0.0381 ram) in order for the bearing to provide a substantial load capacity.

Note that externally pressurized bearings such as HJBs or damper seals do not

present this restriction. The largest load of 10,000 N determines a specific load in

the bearing equal to 2.52 MPa (367 psi). The hydrodynamic 3-pad bearing test

case intends to provide some benchmark data for comparisons with numerical

predictions obtained for a bump-type foil bearing. Details on the static and

dynamic force performance characteristics of the compliant surface bearing are

given by San Andres (1993f).

A thermal mixing groove coefficient (A) equal to zero is taken for all calcula-

tions. This value is very conservative but required to keep the fluid temperature

within tolerable limits for the present application. In the numerical computa-

tions the fluid is not allowed to sustain subambient pressures, i.e. the mimimum

pressures are equal to the supply groove pressure of 5.52 MPa (800 psi). This

assumption is physically correct if the bearing pads are of a compliant nature.

Note that the nominal value of the circumferential flow Reynolds number (Rec)

is equal to 32,216.

Figure 19 shows the bearing equilibrium journal eccentricity ratio and atti-

tude angle as the bearing load increases from zero to a maximum value of 10,000

N (2,250 lbs). For small loads the attitude angle is larger than 90 ° denoting the

effect of fluid inertia. The adiabatic bearing model shows a slightly smaller op-

erating eccentricity and larger attitude angle than the isothermal bearing model.
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Table 7. Liquid Oxygen, three pad hydrodynamic journal bearing.

Geometry and operating conditions. Data from Heshmat (1991).

Number of bearing pads: 3

Diameter (D) Lenqth (L) Clearance (C*)

88.9 mm 44.45 mm 38.1 _m

(3.50 in) (1.75 in) (1.50 mils)

Pad Arc Groove width

110 deg 10 deg

journal and bearing surfaces: smooth." L/D=0.50; C/R=0.00086

Thermal mixing groove coefficient _,= 0.0

Fluid: LO2 (liquid oxygen)

Ts (K) P (MPa) p (kq/m3) p (E-6 Pa.s) Cp(J/kq-K)

95 5.52 1,129.6 183.2 1,71 8.4
(171 R) (800psia)

at supply (inlet) conditions

LO2 critical temperature and pressure: 154.8 K (278.6 R), 5.083 MPa (737.4 psia)

Operatinq Condition: journal speed 29,830 cpm.

Load varies from 0 to 10,000 N (2,245 Ibs)

Nominal circumferential flow Reynolds # (Rec) = 32,616

Cases • (A) adiabatic journal and adiabatic bearing.

(I) adiabatic journal and isothermal bearing at Ts

Load

110 '___i/

feeding

groove

Y
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The journal eccentricity increases rapidly in a non-linear form with the applied

load. Figure 20 depicts the centerline dimensionless pressure field and tempera-

ture rise for a bearing load equal to 7,000 N. Note that the pressure field is almost

identical for both bearing models while the temperature curves show a different

character. The results show the third bearing pad to be fully unloaded. Figure

21 presents the maximum temperature rise for both bearing models. The adia-

batic model shows a dramatic increase in the bearing exit temperature even for

the unloaded condition. The maximum temperature rise is over 50°K (90°R) at

the largest load. On the other hand, the isothermal bearing model offers a very

moderate temperature rise which remains almost invariant for all loads applied.

In the isothermal bearing case the pad surface acts as a sink for thermal energy

and prevents the excessive rise of temperature within the film lands (see Figure

2O).

Figure 22 shows the maximum pressure developed on the bearing and the

drag torque as the bearing load increases. The peak pressure is proportional to

the applied load, and with the isothermal model showing a larger pressure at

the largest load. The drag torque is lower for the adiabatic model bearing since

the larger film temperaturs reduce the liquid viscosity. On the other hand, this

reduction in fluid viscosity due to temperature also causes an increment in the

flow Reynolds number and enhances the turbulence flow effects. This may explain

why the adiabatic bearing model produces a smaller bearing eccentricity than

the isothermal model. Note that the present TI:ID model assumes the bearing

clearance not to be affected by thermal phenomena. This seems to be a rather

poor consideration if the fluid temperature is to rise substantially.

Figures 23 to 25 present the synchronous stiffness (K_j), damping (Cij)

and inertia (Mq) force coemcients versus the applied load for the high speed
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three-pad LO, hydrodynamic bearing. For low loads the force coe_cients are

very similar for both the adiabatic and isothermal bearing models. As the load

increases (and so does the equilibrium journal eccentricity) the force coe_cients

show some differences. Most notably, the cross-coupled stiffness (/_x'r) and direct

stifness (/t'_) coefficients normal to the applied load are larger for the isothermal

model. On the other hand, the direct damping coefficient (Cxx) for the adiabatic

model is substantially smaller than that obtained from the isothermal model. The

direct inertia force coefficients are large in magnitude due to the smallness of the
clearance in the bearing.

Although the stiffness and damping force coefficients show very large mag-

nitudes (for a liquid cryogen bearing) their impact on the bearing stability can

only be determined by the study of the whirl frequency ratio (WFR) and the

equivalent stiffness (/t'eq). Figure 26 shows the WFR for the bearing to be equal

to 0.50 for small loads and decreasing as the load increases. At the largest load,

the adiabatic model offers better stability characteristics (lower WFR) than the

isothermal model. Figure 27 shows the equivalent bearing stiffness (/t'_q) as the

bearing load increases. This (/t'_q) is the stiffness of the bearing for a rigid rotor

supported on fluid film bearings that will result in a system natural frequency

equal to the operating speed times the WFR and with a threshold speed of in-

estability equal to the operating journal speed (i.e. 29,830 cpm). For small loads

/t'eq is rather low and requires that the critical mass of the rotor-bearing system

be also small. For example, for/(_q=-121 MN/m and WFR=0.463 (at a load of 4

KN), the natural frequency of the system is equal to 1,446 rad/sec and the critical

mass would be only 57.8 kg. On the other hand, at a load of 10 KN, K_q=313.8

MN/m and WFR--0.304, the critical mass of the system would be rised to 348 kg.

From Figure 26 and 27 it is inferred that although the isothermal bearing model
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shows a larger equivalent stiffness, its critical mass would be lower since the WFR

is larger than the adiabatic flow model.

The LO_ bearing examples have shown that a cryogenic hydrodynamic

journal bearing is able to support large loads if the bearing clearance is very small

and its projected area (L x D) is large. However, these same requirements cause

thermal effects to be of importance on the static and dynamic force performance

of the bearing. The actual thermal model to be used for a cryogenic hydrodynamic

bearing still needs to be determined by considering the thermal paths across the

bearing and journal surfaces.

To close this section it is noted that no examples have been presented for

bearing applications with liquid hydrogen. The ommission has been involuntary

and several relevant cases can be found in the Examples Manual (San Andres

1993e) and also in the reference of Yang et al. (1993c). However, it is here

advanced that thermal effects are rather insignificant for externally pressurized

LH_ bearings since the specific heat of this fluid is much larger than that of LOs.

On the other hand, fluid compressibility considerations and a Joule-Thompson

like effect rule the performance of LH_ bearings.
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CONCLUSIONS AND RECOMMENDATIONS

A thermohydrodynamic analysis and computer code for the prediction of the

static and dynamic force response of fluid film bearings for cryogenic applications

have been developed. The motion of a cryogenic liquid on the thin film annular

region of a fluid film bearing is described by a set of mass and momentum

conservation, and energy transport equations for the primitive turbulent bulk-

flow variables, and accompanied by thermophysical state equations for evaluation

of the fluid material properties. Zeroth-order equations describe the fluid flow

field for a journal equilibrium position, while first-order linear equations govern

the fluid flow for small amplitude journal center translational motions and journal

axis conical motions. Solution to the zeroth-order flow field equations provides

the bearing flow rate, load capacity, restoring moments and torque. Solution

to the first-order equations determines the 32 rotordynamic force and moment

coefficients due to journal lateral and angular motions. The analysis includes the

effects of flow turbulence, fluid inertia, liquid compressibility and thermal energy

transport on the performance of cryogenic liquid bearings.

The current technological needs call for reliable and resilient fluid film

bearing designs to provide maximum operating life with optimum rotordynamic

characteristics at the lowest cost. The analysis and computer code developed

constitute practical tools for the performance prediction and design of cryogenic

liquid hydrostatic journal bearings, annular pressure seals, and cylindrical pad

bearings.

The numerical predictions from the program developed correlate favorably

with experimental results available in the literature. The comparisons performed

demonstrate the generality of the analysis and validate the computational model,

and also extend the range of applicability of the program to conventional bearings



handling viscous lubricants.

I01

The computer program developed named as hydrosealt calculates:

1) bearing flowrate (seal leakage),

2) friction torque and temperature rise,

3) load capacity (fluid film forces) and restoring moments,

4) rotordynamic force coefficients due to journal center displacements,

5) rotordynamic force coefficients due to journal axis rotations,

6) rotordynamic moment coefficients due to journal center displacements,

7) rotordynamic moment coefficients due to journal axis rotations,

8) Complete pressure and temperature fields on the bearing surface, as well

as density and viscosity field variations, with ranges of fluid flow
Reynolds numbers and Mach numbers.

for isothermal or adiabatic journal and bearing surface conditions.

as a function of:

a) journal (rotor) center eccentricity and journal axis misalignment.

b) inlet specified circumferential pre-swirl velocity.

c) general clearance function in the axial direction.

d) mean surface roughness on bearing and journal film lands.

The fluid properties (density, viscosity and specific heat) are calculated from

the 32 term Benedict-Webb-Rubin equations of state as given by NBS Standard

Reference Database 12 (McCarty, 1986) for the following cryogenic liquids: L02,

LH_, LN_, and methane. Other fluids included in the program are water, mineral

oils and air.

The analytical research and computational program development need urgent

support from a complimentary experimental research effort directed to measure

the dynamic force performance of high speed fluid film bearings with flow

conditions similar to those found in cryogenic environments. Some empirical flow

parameters need to be identified from the test data. These coefficients, like for

example orifice discharge coefficients, recess edge entrance loss factors and shear

friction coefficients, and thermal mixing groove coefficients are of fundamental
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importance for the accurate prediction of the flow and force dynamics in high-

speed, turbulent flow fluid film bearings.

Further research is needed to continue the development of advanced analysis

and computer codes for the prediction of the force response of other fluid

film bearing geometries for cryogenic applications. The study should consider

extension of the analytical models and program developed on Phase I to include

rigid and flexure pivot tilt-pad (hydrostatic) bearings, as well as bearing shells

with a simple elastic structural matrix (foil-bearings). The current THD model

must be advanced to account for radial heat transfer through the bearing walls.

There is also the need to develop a sound analysis and efficient computer

code to calculate the transient fluid film bearing force response due to time-

varying journal displacements and velocities. The analysis should be coupled to

the dynamics of a rotor-bearing system for prediction of rotor lift-off, calculation

of synchronous unbalance frequency response curves, and transient responses due

to abnormal shock and maneuvering loads.

The mechanics of two-phase flow phenomena and choked flow operation in

unique cryogenic conditions should be addressed in the near future. A fundamental

analysis is required with emphasis on the calculation of dynamic force coefficients

and determination of stable regimes of operation.
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A

Ao

A,.

b

Cd

Cp,Cp

Cx_,...,c_._,

D

do

ex ,%

E_

L,L

_j

Fx,Fy,Mx,My

H, h

H,.

ho, hi,

h.,hj

h.,h.

hx,h_,h,x ,h_

NOMENCLATURE

_rDL, journal or bearing surface area [rn 2]

CdTrd2o/4, equivalent orifice area [m 2]

bl, recess area [rn 2]

recess circumferential length [m]

radial clearance, characteristic clearance (= {c(y)}mi,_ ) [m], c/c.

empirical orifice discharge coefficient

specific heat [J/kg.Kl,Cv/Cv. nondimensional specific heat

damping coefficients

journal diameter [m]

orifice diameter [m]

displacements of the journal in X and Y direction [m]

U2./T.Cv., Eckert number

am[1 + (Cmrj.B/H + b,_/R:,_)e"], turbulent friction factors at

journal and bushing surfaces based on Moody's equation,

am=0.001375; bin=5 x 105; cm=104; em=1/2.65

fr, hj dO

film forces(moments)along(around) {X,Y} axes [N,N-m]

film thickness [m], H/c,

recess depth [m]

zeroth- and first-order film thicknesses

heat transfer coefficients to bearing, journal surfaces [W/m 2 • K]

(h_, hj)c./(_* K.), dimensionless bulk heat transfer coefficients

cos O, sin O, sin O, cos O, perturbed film thickness components



Kx_ ,...,K_.

k,

L, LL,LR

l

lvL

fi

P,p

P,: ,Pr

PL,PR

P, ,Po

p,.

qln

?,

Oo

R

Ree
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thermal conductivity of liquid [W/m.KI ' K/K.

stiffness coefficients

(kj + ks)/2, dimensionless shear parameters in X, Y directions

fjRj,fs P_, turbulent shear parameters at journal, bearing surfaces

Re°'6sl/7.753, turbulent shear flow parameter

bearing axial length [m], L = LL + LR

recess axial length [mj

mass flow rate over differential segments [kg/sJ

mass flow rate of a hydrostatic journal bearing [kg/s l

argyles, recess flow Mach number due to rotation

inertia or added mass coefficients [kgJ

normal vector to recess boundary

fluid pressure [N/rn2]; (p_ Pa)/AP, dimensionless pressure

dimensionless dynamic pressures for perturbation

* *= U 2
R%p,. P. .c.Cp./(K.R), Peclet number

discharge pressures on left, right sides of bearing [N/rn 2]

external supply, ambient and recess pressures [N/rn 2)

Cp#/K, Prandtl number

mass flow rate supplied to a recess/groove [kg/s]

Qi,_/(p.c.RU.)

recess to land mass flow rate [kg/s 1

Q,/(p.c.RU.) = f ph(a. a)dr.

heat flux to the bounding surfaces [W/rn 2]

dimensionless heat flux to the bounding surfaces

journal radius [m)

p.R_c./#., nominal circumferential flow Reynolds number



Re R

Rep

Re;

Re,.

Re,

Rj

RB

rj,rB

St

T,:F

7".

t

TB,Tj

T,

Tu,Td,T, de

T _
o_

U,V

U_Y

O,fz

U.

¢

V_
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peRf_H_/#_, Reynolds number at recess edges

p.U.c.//.z., reference pressure flow Reynolds number

Rep(c./R), modified reference pressure flow Reynolds number

p,.Rfl(H,. + H)/#,., Reynolds No. at recess volume due to rotation

p. c./#.,, nominal squeeze film Reynolds number

PHv/( U - f_R) 2 + V2/# Reynolds number to journal surface

PHV/U_ + V2/#, Reynolds number relative to bearing surface

mean roughness depth at journal and bearing surfaces Im]

h_./pCvVt, Stanton number

two-dimensional bulk temperature in the fluid film IK], T/T.

T,, characteristic temperature [K]

7_(z, y, z, t), three-dimensional temperature [K]

time [sec]

temperatures at the bearing and the journal surfaces [K l

inlet supply temperature at the orifice [K]

temperatures at the up-, down-stream and side recess edges [K]

fluid film resistant torque IN-rot

"rHA,.R, friction torque over a recess area IN-m]

mean flow circumferential and axial velocities [m/s]

(U,V)/U., dimensionless mean flow velocities

ur + VL Rni'+ 0j

three-dimensional velocities in x,y,z directions Ira/s]

APc2./(#.R), characteristic velocity [m/s]

(H. + H)Av + V., total recess volume [rn31

V_'/(c.R2), dimensionless recess volume



V$

lcrt , U t

X,Y,Z

Z,y,Z

Zo,Zo,Z

z,y

,3t

OL

O_y

A

o"

A1

A2

P,P.,fi

#,#.,f_

2,y

_z,y

_z,y
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volume of orifice supply line [rn 3]

v/U2 + V2 [m/sl, _ + v2, fluid speed

inertial coordinates defining journal position in bearing

(0,zrD),(- L L ,L n),(0,H(x,y,t)), coordinates defining flow regions

distance to center of journal angular motions, Zo/R, Z/R

(:c/R = 8),y/R, dimensionless x, y coordinates

l (Op/OP)r, liquid compressibility factor [rn 2 /N]

/3pAP, dimensionless liquid compressibility factor [m2/N]

-_(Op/OT)p, volumetric expansion coefficient [1/K]

3tT., dimensionless volumetric expansion coefficient

(U[v=o)/(_R), circumferential velocity entrance swirl factor

21--(1+ _)Rep, axial entrance loss coefficient

12R/U., dimensionless journal velocity or speed parameter

caR/U., dimensionless frequency parameter at film land

thermal mixing coefficient for groove heat carry-over

o'V., dimensionless frequency parameter at recess volume

el�R, modified frequency parameter at recess volume

Al_p., combination of compressibility 8z frequency parameters

rotational speed of journal [rad/sec]

excitation or whirling frequency [rad/sec]

fluid density, characteristic density [kg/mS], p/p.

fluid viscosity, characteristic viscosity INs/m2], #/#.

k,.(b/D)(y/h) 2/(1 - M_), recess volume shear coefficient

Re*v(1 + (z,v)(1 + _,v)[1 - (ype/p.)2], recess entrance loss factors

1.95/Re°n'4a, 0

empirical entrance loss coefficients in X, Y directions



ex,ev

7"

7"h
C

r_,rvz

q

7

/Cp

/(L,_R

Scripts:

0

J

e

J

B

7"
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(z at up- and down-stream of recess/land entrance, respectively

Ao_. x/2/Ic3. _, dimensionless orifice parameter

ex/c.,e r/c., dimensionless journal eccentricities in X, Y directions

journal axis angular rotations around X, Y axes

dimensionless dynamic (perturbed) eccentricities

dynamic (perturbed) journal angular rotations

oat, dimensionless time coordinate

#Iuk a -(u- A)kjl/4h, dimensionless shear stress on journal

wall shear stresses in X and Y directions

HI(H,. + I-I), ratio of land film thickness to recess depth

first order turbulent shear coefficients

pad leading edge pressure recovery factor

discharge coefficients for end seal restrictions

refers to zeroth-order solution

refers to first-order perturbations(j --_, X, Y direction)

refers to entrance or recess edge conditions

refers to recess conditions

refers to journal

refers to bushing

refers to characteristic values or supply conditions

refers to three-dimensional variables

refers to dimensionless variables or parameters
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APPENDIX B

HEAT TRANSFER TO BUSHING AND JOURNAL

For the lumped fluid film model assumption, the heat transfer from fluid film

to the bounding surfaces has been expressed as

Qs = hs(T- Ts) + hz(T- Tj) (B.1)

where, hs and hj are the heat-transfer coefficients to the bushing and journal,

respectively. They can be found through the Reynolds-Colburn analogy between

fluid friction and heat transfer (Holman, 1986). The average heat transfer over

the entire laminar/turbulent boundary layer is

where

S ._2/3
ts.',. = f /2 (B.2)

S t _ ht

pCpVt ( Stanton number ), (B.3)

( Prandtl number ), and
Cptt

K

c

is the Fanning friction factor Based on Moody's Equation (Massey,1983).

So, the heat transfer coefficient can be written as

(B.4)

(B.S)

1

h, = _pC_,V_f /_2/3 (B.6)

1

hB = 5pCpVs.fB /_2/3 (B.?)

1

hj = _pCpYjfj/_/_ (B.8)

Actually, there are plenty of formulae for turbulent heat transfer coefficients

(Holman, 1986). The above expressions are used because of the simplicity and

the ability to include the surface roughness effects.
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APPENDIX C

ZEROTH- AND FIRST-ORDER EQUATIONS

Zeroth-Order Equations on Film Lands

Continuity Equation

116

0

°(Zoho_o) + _(Zohovo) ---o; (c.1)

• Circumferential-Momentum Equation

-hoop° #o (k_,oUo - k.o A O Oo_ - ho -/) +Re;[ (_oho_o_)+ _(_oho_ovo)]; (C.2)

• Axial-Momentum Equation

_hoOPO_ Zo(k_ovo)+ ne;[ (Zoho_o_o)+ _(Zohovo)]; (C.3)09 ho

• Energy-Transport Equation

0 - 0

_; {e_o[_(Zoho_oTo)+ _(_oho_o_o)]+ (_o+ _o)_O}E_

= 3toToho(uo 0p° __o i. a 0p o Re; _ _+ _o )+,_o_-_- + --E--i-(h_oT_o+ h_oT_o)

1+_°[k_o(v,_o+ + k_o( A_h0 _oh) -_oh)] (c.4)

Zeroth-Order Equations at HJB Recesses

• Mass Conservation at a Recess

_*V/fi,o( 1 - P_o) = q,,o = / fioho(ffo, ff)dF (C.5)

• Global Energy Balance Equation at a Recess

(c.6)
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The recess temperature can be found from the above energy balance equation

as follows.

In a hydrostatic journal bearing, flow supply enters the recess through an

orifice restrictor. Temperatures at the downstream and side edges of the recess are

approximately equal to the recess temperature due to the high pressure gradient:

_do= Lideo = T.o = Co,_t,.u (C.7)

Substituting Eq.(C.7) into Eq.(C.6), the recess temperature is then given by:

iP,0 1 [ _" AE¢]___ T oPO

2q,,deo+ qdoq,,_o+ _ ,_uot_o+ Go -_-gGJ (c.s)
where

7_0 = { 7_'°' if (fro" fi) > 0; (C.9)
Upstream Film Values on Film Lands, otherwise.

The above equations show that if fluid flows out of all the four recess edges

(as in a pure hydrostatic beairng), the edge temperatures are equal to the recess

temperature. If the hot lubricant left the upstream film lands enters the recess

at the trailing edge due to journal rotation, then an averaged uniform recess

temperature can be obtained from the mixing of upstream and inlet temperatures.

• Global Energy Balance Equation at a Groove

Z maoTdo = Z rn=°T_° + qi,_01Pin0 (c._o)

where

qino = rhdO -- m uo = qdO -- quo. (6'.11)

If

q_0= _ _0 > o, (c.12)
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then,

T,,0 = Upstream Film Values on Upstream Pad

and

(a) If qdo > q=o, then

td0 = _ _ '_o_o
qdO qdo /

(C.14)

where

Tino= 1.0.
(C.15)

(b) If qdO < q_o, then

]_d0 = { A2_u0' if qdO )_ 0;
Upstream Film Values on Downstream Pad, if qdo < O. (c.16)

Recess/Film Entrance Pressure Rise/Drop

Pr0,

, (ao ._) > o, in x direction

in y direction;

p+_o = P[o ¢i:. e0 a0 "a)2 (a0. > o

(C.17)

(C.18)

C.3 First-Order Equations on Film Lands

The fist-order equations are obtained from the perturbations in the film

thickness due to journal displacements (Ae x,A%) and rotations (A6 x ,A6 x). The

perturbed (dynamic) film thickness in the following first-order equations can be

expressed as

{ hx,h ,hj = (2- 20){h6x,h_, },

where

for journal displacements about (X,Y) axes;

for journal axis rotations around (X,Y).

(C.19)

hx =h& r =cos0, hv =_h6x =sin0 (C.20)
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* Continuity Equation

+ _oU_ho + _j_,oho) + -_(_ovohj + _o,,jho + _Voho)

+ io'(fiohj + :iho) = 0

(c.21)

• Circumferential-Momentum Equation

-ho = (Tu_ + i#ohoRes)uj + 7uvVj + 3,uhhj + 3"uppj + 3,uu_j

0 0 Ouo Ouo,

+ Re;[-_z(fiohououj)+ -_(fiohovouj)+ fiohouj _ + fiohovj--_._j

Axial-Momentum Equation

(C.22)

Opj

-h0 -_ = (3,or + ifiohoRes)vj + %,_uj + 3,vhhj _- 3"vppj + 3,vu_tj

, 0 0 - h 0v0 0v0]+ Rep[-_x(fiohouovj) + -_(fiohovovj) + Po ouj _ + fiohovj
- 09

Energy-Transport Equation

(c.23)

Re_ 0
Op0-U[_(_0 h0u0T_) + -_(fiohovoTj)] + (3',, + ifiohoCpoRe,/Ec)T j

+Tt_,uj + 3,t,vj + (3,tp - io'/3toToho)pj + 3,thhj - hoA Op----J_j (C.24)
2 02.

= Z,oToho(uo v Opj RG _ _

where, the subscript "j"(=X,Y,5 x ,Sy ) denotes the direction of perturbation for the

first-order variables. The 3' coefficients arise from the perturbation of the turbulent

shear parameters k_ and krj and are given in this Appendix. The perturbed first-

order liquid properties are evaluated from relationships like

op t -4- '_ 0 ' "'"

C.4 First-Order Equations at HJB Recesses



Mass Conservation at a Recess

O_prO_2-f

2q,0

g2-=q,j + ifi,Oallf, j + (1 - p,o) ,P,o
2q,o

where

and

iA lfi,.o ] 3t,O 2_,-j

f

= JV (_5ohjllo + PohoUj 4- fijhoUo) • 5dF
qrj

All = crl/R ,

_2 = ,_l_p,.o = o'V,/3v,o
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(C.26)

(C.27)

(c.28)

(c.29)

(c.3o)

are the perturbed recess mass flow rate, a modified frequency parameter, and a

combination of the frequency and compressibility parameters at recess volume,

respectively.

Global Energy Balance Equation at a Recess

Z (_0_, +_o _o_. _._0 +_m_o_., +_._,_.,_.0)

To, o E_A= q.s - i_'_¢.(f.o,.J+ ,.of.t) + _?:;o 0,.o _

Assuming

(c.31)

(c.32)

then, the perturbed recess temperature can be calculated as

q,.o + io'V,._,.o

{ 'T',j Cp"3 f'_,",o E_A
icrV,. T,.o _,.j +

-_" Cpro

(C.33)



where

T_,.j = T_,. o 1 + --_ yt---o

is the perturbed dimensionless torque.

• Global Energy Balance Equation at a Groove

Assuming

(T_)j =0

then

If

then

and

2Cos ) hj

E Tquo = > 0,_u0

20,0 = Upstream Film Values on Upstream Pad,

(a) If qdo = _ _'Yndo > q_o, then

_dj= 1 [_ _(_o_ +_j_o -
qdO

(b) If qdo < q,_o, then

Upstream Film Values on Downstream Pad,

Recess/Film Entrance Pressure Rise/Drop

= ,1"p,j - _,¢,_(_,)(_j. _), _0. _ > 0,
P_

( Prj,

if qdO >__ 0;

if qdO < O.

in x direction

in y direction;
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(C.34)

(C.35)

(c.36)

(c.3_)

(c.38)

(C.39)
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+

P_J=P-iJ--¢_[_e°(_°'_)(_J'_)+_eJ(_o'_)_/2]; _o'_>0 (C.40)

C.5 Perturbed Shear Coefficients

The perturbed shear coefficients for the first-order solution are given for a

general fluid by:

=[k_0
7,,,, h0 + f,1 (Uo - A) 2 + fslu2o]fto (C.41)

=[k_0-r_ ho + (f'_ + f_)q]_° (C.42)

7u,, = 7v= = If,1 (Uo -A) + f, luo]Vofto (C.43)

_ = [_o(-k_o_-c_ +c.) -A(q_ - k_o/2)]&_o (c.44)h_
YO

7oh= _(-k_o+ co_+ c.)po (c.45)

bm _o[_o(7_+ 7s) - A_7_]- hoopo
7up- 2ho #o p--_ 0--_- (C.46)

bm_o[_o(7_+ 7_)] hoOpo
7-o -- 2ho #o rio 01_ (C.47)

-bm

7_, - 2h0 [Uo(7_ + %)- nl%] (C.48)

-bm

7,_ - 2ho [Vo(7_ + %)] (C.49)

Re p {Cpofioho 02_o [ f , l uo 0 f ,q (uo -7,°- Eo -_;+2h°_o "_°+ k_oA)0_°]}

n (C._O)0_ _o[k.o(2uo+ Ak_o]- 3to To ho _ ho 2- ) -

- #o[(U_o + 2u¢_)(Uo - A)f_ + U¢ouof, a]

Re;
7,o --F/[GoZoho°_° rs,_ s_o_ Opo= --_ + 2h°v°'_.o0"°+ k_o-_o,]-_oToho0_

(c.51)
_o(2kvovo ) - #oVo[(U_o(f,.1 + f,_ ) + 2ucl f,.1 ]

Off Oft O_ Ok OC v (C.52)7., = 7,. o_ + 7., _ + 7,__ + 7,__ + % op



+ 7tp -_

- £_o(,,o °_ Opo Z,o

bm 1

_ Re; OTo Vo OTo )w_---ETEGoho(_o v,b,__ -r,b__

_ f_o b,_

zoh--7{'c°Ik_°+ T(> + _/,)l+ _(k_o + <_,)}

oz oa o_: oG
+ 7,_o-i+ 7_ -6[ + 7_ -6F + 7c,ot

_ = -hoto(uo °PO opo
+ _o_)

where

_ R_;i_o_° O_o O_o__ - _ (_o +_o +_¢o/e_oI

Co,. 1 1

C'=c'_.a--7; c,=_-Tg '

%o= Re,(_o/ao)holug+,gl_/=,

_ _ _arn • ern

7s = ------- --am " em

[ko/am - 1J(_/,,_:b'
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(C.62)

(c.63)



f,'l = (R%fi°/#°)2h°
2Rjo [f.o +/3.7.];

L_ = (R_°/_°)_h°
2Rso [f,o + 3,7,],

_. = b_/n:o ; 9, = b,_/_o,

,_ A A 2
Uco = U2o+ _o + Uo__ ; u_l - 4
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(C.64)

(c.6_)

(c.6_)

(c.6_)
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APPENDIX D

ALGEBRAIC EQUATIONS FOR THIN FILM FLUID FLOWS

For convenience, the subscript "0" is omitted for all the zeroth-order variables.

D.1 Dimensionless Zeroth-Order Discretization Equations

a) Circumferential u-momentum equation:

Up uu u u (D.1)

where

ZA:b=A_+A_v+A}+A_

m

A} = RepMax(-F_, O) ;

A_ = Re*pMax(-F_, O) ;

Re = (Zhu)ea9 ;

u * U

A w = RepMax(F_, O) ;

u * II.

A s = RepMax(F_ , 0)

F_ = (phu)_a_;

F, = (fihv),A2

(D.2)

(D.3)

(D.4)

(D.5)

(D.6)

(D.7)

b) Axial v-momentum equation:

A_vp = A_EVE + A_VvVc + A_svs + A_NVN + S: (D.8)

where

A_, = Z A_b + S_, (D.9)



A_ * _ _ * _0= R%Max(-F_,O); A w = RevMax(F_,O);

A N = RepMax(-F_,O); A s = RevMax(F; ,0)

Sv = Lh _j_/_,.."_v

126

(D.10)

(D.11)

(D.12)

c) Correction-p equation( from the continuity equation ):

p i p t p t p t p I p
Appp = AEP E + Awp W + Asp s + ANP N + S c (D.13)

where

- p - u
APE = (ph )eAypD" ;

Dp = A_- _ A_b ;

A§ : (fih)_A£vD; ; ......

,, h_A2.

D. Ap - _ A_b

(D.14)

(D.15)

(D.16)

U V

Note that the denominators of Dp and Dp will not be zero due to under-

relaxation and source terms.

sg = -(F$- F_"+ F_- F,_) (D.17)

d) Energy equation:

(D.18)

A_= Z A_ + sh + Max(sh,0)

AtE Cp(Re*p/Z_)Max(_Ft,O); At w - • t= = Cp(R%/E¢)Max(F_,O);

A_ - * tCp(Rep/Ec)Max(-F_,O); Ats - * t= = Cp(Rep/E_)Max(F_,O)

Sbl = Re*p/E¢(h s + [b)A_..Aflv

sb== -&h_[u_(p_ - p_)/,_. + >(p_ _ p.)/,_.]

(D.19)

(D.20)

(D.21)

(D.22)



S'_ = Sc_l -_- Sc_2 --}- S_2, -{- Max(-S_, 0)T(p 0)

h 1 A 2s_ = { [k_(,,_+ ,_+ _,,A)+ k_(T - ua)]}, _x_

S_ 2 = A

S_a = R%/Ec(hBT _ + h,T,)A_.pAOp
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(D.23)

(D.24)

(0.25)

(0.26)

D.2 Dimensionless First-Order Diseretization Equations

a) u-momentum equation:

where

A_pj_p = A_ujE + A_v_w + A_s_s + A_NUjN + Sc_j

A_j = Z A_b + S_j

A_E = Re*pMax(- F_ , O) ;

lg * lg

A N = R%Max(-F_, O) ;

11, ¢_ U

Aw = RevMax(F_,, O) ;

= * _ O)A} RevMax(F_,

S_,j = (%= + ifihRe,)A,5,,Ag, , + Max(S_2j,0 )

s_,j = Re;Zh(u,- _)_,_

S_Uj = - (7_vj + 7uhhj + 7_pfij + 7u_,#j)A_,,Ag,,

- Re*pfih(u,_ - u,)A_.,,vj + Max(-S_,2j,O)u j

b) v-momentum equation :

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

where

= A}_E + A_w + A_svjs + A_N_N + S_ (D.33)

A_,j = _ A,_b+ S_ (D.34)



c)

= R%M_(-G,0)" Aw = RepMa_(F;,0);

A N RepMax(-F_,O); A"s *= = RepMax(F;, O)

SVPj "= (Tvv + ifihRe.)A_2.A_. + Max(S_2j, 0 )

Se_ = - (Tvuuj + "Yvhhj + 7vpPj + "/vof-tj)Ax, vA_jv

Correction-p equation( from the continuity equation ):
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(D.35)

(D.36)

(D.37)

(D.38)

p t p t p t p t p i p
Appjp = AEPjE + AwPjw + AsPj s + ANPj N ÷ Sc j (D.39)

where

APE = (fih )_ A _jpD_ ;
F

h_
Dp = A_ - _ d:b ;

A§ = (fih)_A2pD; ; ......

v h_A_p

Dp = A_-- E A:b ; ......

- (fivhj + fijvh)'_A2 - ia(fijh + fihj)A2A_)

F_ = (fihuj).A_j; F_j = (fihuj)_.A_j;

d) Energy equation:

(D.40)

(D.41)

(D.42)

(D.43)

(D.44)

(D.45)

where

A_j = E At' + 7ttA_nA_p (D.46)



A_=C *p(Rep/E¢)Max(-F:,O); Atw - • t= Cp(Rep/E_)Max(F_,,O);

= p(nep/E_)Max(-F_,O); Ats = Cp(Re;/E_)Max(Ft,O)

-- h A
+ (_Thu + 2 )(pj¢ - pj_)Af/p + _Thv(pj,_ - pj,)A_p
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(D.47)

(D.48)


